Skip to main content
Top

2020 | OriginalPaper | Chapter

3. Unfolding Nonlinear Characteristics of Noise-Contaminated Real-World Data

Authors : Sirshendu Mondal, Achintya Mukhopadhyay

Published in: Dynamics and Control of Energy Systems

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The success of dynamic characterization of a system mostly depends on how far the nonlinear structure of the data is identified. In most of the practical systems, the dynamic behaviour is to some extent dominated by stochastic processes. In such a scenario, unfolding the hidden determinism and nonlinearity from the real world data which is acquired from a complex physical phenomenon is a challenging task. The tools from nonlinear time series analysis facilitate a systematic investigation of complex dynamics mostly observed in real life phenomena. The present chapter proposes a survey on different such tools which are used for the dynamic characterization of experimental time series. To take the first step in this course, detecting noise contamination in the time series data is discussed, highlighting the tests for determinism such as local flow test (Kaplan-Glass test), translation error, correlation dimension, and correlation entropy. Once the determinism of a time series is identified, figuring out the nonlinear nature is the next concern. There are a few direct tests such as Lyapunov exponent, correlation dimension to confirm chaos, however, they have their inherent limitations while analysing experimental data contaminated with noise. In such a situation, a statistical test popularly known as surrogate test is adopted. The test is based on different (null) hypotheses and examining their validity through any discriminating statistics such as translation error, permutation entropy. Permutation spectrum can further be used to characterize the dynamic nature of the time series. Other aspects which help further understanding of the data sets in hand are the fractal features and the predictability. The fractal features of a time series are identified by using singularity spectrum. Finally, the role of local predictor such as Sugihara-May algorithm for forecasting the dynamics of a deterministic system is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abarbanel HD, Brown R, Sidorowich JJ, Tsimring LS (1993) Rev Mod Phys 65(4):1331CrossRef Abarbanel HD, Brown R, Sidorowich JJ, Tsimring LS (1993) Rev Mod Phys 65(4):1331CrossRef
go back to reference Benesty J, Chen J, Huang Y, Cohen I (2009) Noise reduction in speech processing. Springer, pp 1–4 Benesty J, Chen J, Huang Y, Cohen I (2009) Noise reduction in speech processing. Springer, pp 1–4
go back to reference Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. Wiley Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. Wiley
go back to reference Cao Y, Tung WW, Gao J, Protopopescu VA, Hively LM (2004) Phys Rev E 70(4):046217 Cao Y, Tung WW, Gao J, Protopopescu VA, Hively LM (2004) Phys Rev E 70(4):046217
go back to reference Chatfield C (2016) The analysis of time series: an introduction. Chapman and Hall/CRC Chatfield C (2016) The analysis of time series: an introduction. Chapman and Hall/CRC
go back to reference Datta S, Mondal S, Mukhopadhyay A, Sanyal D, Sen S (2009) Combust Theory Model 13(1):17CrossRef Datta S, Mondal S, Mukhopadhyay A, Sanyal D, Sen S (2009) Combust Theory Model 13(1):17CrossRef
go back to reference Ghosh S, Mondal S, Mondal T, Mukhopadhyay A, Sen S (2010) Int J Spray Combust Dyn 2(3):267CrossRef Ghosh S, Mondal S, Mondal T, Mukhopadhyay A, Sen S (2010) Int J Spray Combust Dyn 2(3):267CrossRef
go back to reference Glass L, Kaplan D (1993) Med Prog Technol 19:115 Glass L, Kaplan D (1993) Med Prog Technol 19:115
go back to reference Gotoda H, Asano Y, Chuah KH, Kushida G (2009) Int J Heat Mass Transf 52(23–24):5423CrossRef Gotoda H, Asano Y, Chuah KH, Kushida G (2009) Int J Heat Mass Transf 52(23–24):5423CrossRef
go back to reference Gotoda H, Shinoda Y, Kobayashi M, Okuno Y, Tachibana S (2014) Phys Rev E 89(2):022910CrossRef Gotoda H, Shinoda Y, Kobayashi M, Okuno Y, Tachibana S (2014) Phys Rev E 89(2):022910CrossRef
go back to reference Gotoda H, Amano M, Miyano T, Ikawa T, Maki K, Tachibana S (2012) Chaos Interdiscip J Nonlinear Sci 22(4):043128 Gotoda H, Amano M, Miyano T, Ikawa T, Maki K, Tachibana S (2012) Chaos Interdiscip J Nonlinear Sci 22(4):043128
go back to reference Gotoda H, Ikawa T, Maki K, Miyano T (2012) Chaos Interdiscip J Nonlinear Sci 22(3):033106 Gotoda H, Ikawa T, Maki K, Miyano T (2012) Chaos Interdiscip J Nonlinear Sci 22(3):033106
go back to reference Gotoda H, Nikimoto H, Miyano T, Tachibana S (2011) Chaos Interdiscip J Nonlinear Sci 21(1):013124 Gotoda H, Nikimoto H, Miyano T, Tachibana S (2011) Chaos Interdiscip J Nonlinear Sci 21(1):013124
go back to reference Harikrishnan K, Misra R, Ambika G, Kembhavi A (2006) Phys D Nonlinear Phenom 215(2):137CrossRef Harikrishnan K, Misra R, Ambika G, Kembhavi A (2006) Phys D Nonlinear Phenom 215(2):137CrossRef
go back to reference Harikrishnan K, Misra R, Ambika G (2009) Commun Nonlinear Sci Numer Simul 14(9–10):3608CrossRef Harikrishnan K, Misra R, Ambika G (2009) Commun Nonlinear Sci Numer Simul 14(9–10):3608CrossRef
go back to reference Harikrishnan K, Misra R, Ambika G, Amritkar R (2009) Chaos Interdiscip J Nonlinear Sci 19(4):043129 Harikrishnan K, Misra R, Ambika G, Amritkar R (2009) Chaos Interdiscip J Nonlinear Sci 19(4):043129
go back to reference Hilborn RC et al (2000) Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press on Demand Hilborn RC et al (2000) Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press on Demand
go back to reference Miyano T, Moriya T, Nagaike H, Ikeuchi N, Matsumoto T (2008) J Phys D Appl Phys 41(3):035209CrossRef Miyano T, Moriya T, Nagaike H, Ikeuchi N, Matsumoto T (2008) J Phys D Appl Phys 41(3):035209CrossRef
go back to reference Mondal S, Mukhopadhyay A, Sen S (1995) In: 10th Asia-Pacific conference on combustion, Beijing, China, 19–22 July 1995 Mondal S, Mukhopadhyay A, Sen S (1995) In: 10th Asia-Pacific conference on combustion, Beijing, China, 19–22 July 1995
go back to reference Nair V, Thampi G, Karuppusamy S, Gopalan S, Sujith R (2013) Int J Spray Combust Dyn 5(4):273CrossRef Nair V, Thampi G, Karuppusamy S, Gopalan S, Sujith R (2013) Int J Spray Combust Dyn 5(4):273CrossRef
go back to reference Parlitz U, Berg S, Luther S, Schirdewan A, Kurths J, Wessel N (2012) Comput Biol Med 42(3):319CrossRef Parlitz U, Berg S, Luther S, Schirdewan A, Kurths J, Wessel N (2012) Comput Biol Med 42(3):319CrossRef
go back to reference Rosenstein MT, Collins JJ, De Luca CJ (1993) Phys D Nonlinear Phenom 65(1–2):117CrossRef Rosenstein MT, Collins JJ, De Luca CJ (1993) Phys D Nonlinear Phenom 65(1–2):117CrossRef
go back to reference Takens F (1981) Dynamical systems and turbulence, Springer, Warwick, pp 366–381 Takens F (1981) Dynamical systems and turbulence, Springer, Warwick, pp 366–381
go back to reference Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Phys D Nonlinear Phenom 58(1–4):77CrossRef Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Phys D Nonlinear Phenom 58(1–4):77CrossRef
go back to reference Tony J, Gopalakrishnan E, Sreelekha E, Sujith R (2015) Phys Rev E 92(6):062902CrossRef Tony J, Gopalakrishnan E, Sreelekha E, Sujith R (2015) Phys Rev E 92(6):062902CrossRef
go back to reference Wayland R, Bromley D, Pickett D, Passamante A (1993) Phys Rev Lett 70(5):580CrossRef Wayland R, Bromley D, Pickett D, Passamante A (1993) Phys Rev Lett 70(5):580CrossRef
go back to reference Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Phys D Nonlinear Phenom 16(3):285CrossRef Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Phys D Nonlinear Phenom 16(3):285CrossRef
Metadata
Title
Unfolding Nonlinear Characteristics of Noise-Contaminated Real-World Data
Authors
Sirshendu Mondal
Achintya Mukhopadhyay
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-0536-2_3