Skip to main content
Top
Published in: Theory of Computing Systems 1/2022

15-07-2021

Univariate Ideal Membership Parameterized by Rank, Degree, and Number of Generators

Authors: V. Arvind, Abhranil Chatterjee, Rajit Datta, Partha Mukhopadhyay

Published in: Theory of Computing Systems | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let \({\mathbb {F}}[X]\) be the polynomial ring in the variables X = {x1,x2,…,xn} over a field \({\mathbb {F}}\). An ideal I = 〈p1(x1),…,pn(xn)〉 generated by univariate polynomials \(\{p_{i}(x_{i})\}_{i=1}^{n}\) is a univariate ideal. Motivated by Alon’s Combinatorial Nullstellensatz we study the complexity of univariate ideal membership: Given \(f\in {\mathbb {F}}[X]\) by a circuit and polynomials pi the problem is test if fI. We obtain the following results.
  • Suppose f is a degree-d, rank-r polynomial given by an arithmetic circuit where i : 1 ≤ ir are linear forms in X. We give a deterministic time dO(r) ⋅poly(n) division algorithm for evaluating the (unique) remainder polynomial f(X)modI at any point \(\vec {a}\in {\mathbb {F}}^{n}\). This yields a randomized nO(r) algorithm for minimum vertex cover in graphs with rank-r adjacency matrices. It also yields a new nO(r) algorithm for evaluating the permanent of a n × n matrix of rank r, over any field \(\mathbb {F}\).
  • Let f be over rationals with \(\deg (f)=k\) treated as fixed parameter. When the ideal \(I=\left \langle {x_{1}^{e_{1}}, \ldots , x_{n}^{e_{n}}}\right \rangle \), we can test ideal membership in randomized O((2e)k). On the other hand, if each pi has all distinct rational roots we can check if fI in randomized O(nk/2) time, improving on the brute-force \(\left (\begin {array}{cc}{n+k}\\ k \end {array}\right )\)-time search.
  • If \(I=\left \langle {p_{1}(x_{1}), \ldots , p_{k}(x_{k})}\right \rangle \), with k as fixed parameter, then ideal membership testing is W[2]-hard. The problem is MINI[1]-hard in the special case when \(I=\left \langle {x_{1}^{e_{1}}, \ldots , x_{k}^{e_{k}}}\right \rangle \).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
We use f to denote f(1,…,r).
 
2
Shown [28] using the identity \(e^{{\sum }_{i} y_{i}}={\prod }_{i} e^{y_{i}}\), and taylor series expansion for \(e^{y_{i}}\).
 
3
Polynomials \(f,g\in \mathbb {F}[X]\) are weakly equivalent if for each monomial m, [m]f = 0 if and only if [m]g = 0.
 
Literature
5.
go back to reference Arvind, V., Chatterjee, A., Datta, R., Mukhopadhyay, P.: Fast exact algorithms using Hadamard product of polynomials. arXiv:1807.04496 (2018) Arvind, V., Chatterjee, A., Datta, R., Mukhopadhyay, P.: Fast exact algorithms using Hadamard product of polynomials. arXiv:1807.​04496 (2018)
6.
go back to reference Arvind, V., Chatterjee, A., Datta, R., Mukhopadhyay, P.: Univariate ideal membership parameterized by rank degree, and number of generators. In: 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, pp 7:1–7:18 (2018). https://doi.org/10.4230/LIPIcs.FSTTCS.2018.7 Arvind, V., Chatterjee, A., Datta, R., Mukhopadhyay, P.: Univariate ideal membership parameterized by rank degree, and number of generators. In: 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, pp 7:1–7:18 (2018). https://​doi.​org/​10.​4230/​LIPIcs.​FSTTCS.​2018.​7
7.
go back to reference Arvind, V., Chatterjee, A., Datta, R., Mukhopadhyay, P.: Efficient black-box identity testing over free group algebra (accepted in RANDOM 2019). arXiv:1904.12337 (2019) Arvind, V., Chatterjee, A., Datta, R., Mukhopadhyay, P.: Efficient black-box identity testing over free group algebra (accepted in RANDOM 2019). arXiv:1904.​12337 (2019)
12.
go back to reference Cox, D.A., Little, J., O’Shea, D.: Ideals Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics). Springer-Verlag, New York, Inc., Secaucus, NJ USA (2007)CrossRef Cox, D.A., Little, J., O’Shea, D.: Ideals Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics). Springer-Verlag, New York, Inc., Secaucus, NJ USA (2007)CrossRef
17.
go back to reference Kayal, N.: Algorithms for arithmetic circuits. Electron. Colloq. Comput. Complex. (ECCC) 17, 73 (2010) Kayal, N.: Algorithms for arithmetic circuits. Electron. Colloq. Comput. Complex. (ECCC) 17, 73 (2010)
21.
go back to reference Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, pp 575–586 (2008). https://doi.org/10.1007/978-3-540-70575-8_47 Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, pp 575–586 (2008). https://​doi.​org/​10.​1007/​978-3-540-70575-8_​47
24.
go back to reference Lee, H.: Power sum decompositions of elementary symmetric polynomials. Linear Algebra Appl. 492(08) (2015) Lee, H.: Power sum decompositions of elementary symmetric polynomials. Linear Algebra Appl. 492(08) (2015)
26.
go back to reference Mayr, E., Meyer, A.: The complexity of word problem for commutative semigroups and polynomial ideals. Adv. Math 46, 305–329 (1982)MathSciNetCrossRef Mayr, E., Meyer, A.: The complexity of word problem for commutative semigroups and polynomial ideals. Adv. Math 46, 305–329 (1982)MathSciNetCrossRef
28.
go back to reference Saxena, N.: Diagonal circuit identity testing and lower bounds. In: Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, pp 60–71 (2008). https://doi.org/10.1007/978-3-540-70575-8_6 Saxena, N.: Diagonal circuit identity testing and lower bounds. In: Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, pp 60–71 (2008). https://​doi.​org/​10.​1007/​978-3-540-70575-8_​6
30.
go back to reference Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pp 216–226. ACM, New York, NY USA (1978) Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pp 216–226. ACM, New York, NY USA (1978)
31.
go back to reference Schwartz, J.T.: Fast probabilistic algorithm for verification of polynomial identities. J. ACM. 27(4), 701–717 (1980)MathSciNetCrossRef Schwartz, J.T.: Fast probabilistic algorithm for verification of polynomial identities. J. ACM. 27(4), 701–717 (1980)MathSciNetCrossRef
32.
go back to reference Sudan, M.: Lectures on algebra and computation. Lecture notes 6,12,13,14 (1998) Sudan, M.: Lectures on algebra and computation. Lecture notes 6,12,13,14 (1998)
34.
go back to reference Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Proc. of the Int. Sym. on Symbolic and Algebraic Computation, pp 216–226 (1979) Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Proc. of the Int. Sym. on Symbolic and Algebraic Computation, pp 216–226 (1979)
Metadata
Title
Univariate Ideal Membership Parameterized by Rank, Degree, and Number of Generators
Authors
V. Arvind
Abhranil Chatterjee
Rajit Datta
Partha Mukhopadhyay
Publication date
15-07-2021
Publisher
Springer US
Published in
Theory of Computing Systems / Issue 1/2022
Print ISSN: 1432-4350
Electronic ISSN: 1433-0490
DOI
https://doi.org/10.1007/s00224-021-10053-w

Other articles of this Issue 1/2022

Theory of Computing Systems 1/2022 Go to the issue

Premium Partner