Skip to main content
Top

2023 | OriginalPaper | Chapter

Unsupervised Deep Clustering and Reinforcement Learning Can Accurately Segment MRI Brain Tumors with Very Small Training Sets

Authors : Joseph N. Stember, Hrithwik Shalu

Published in: International Symposium on Intelligent Informatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lesion segmentation in medical imaging is key to evaluating treatment response. We have recently shown that reinforcement learning can be applied to radiological images for lesion localization. Furthermore, we demonstrated that reinforcement learning addresses important limitations of supervised deep learning, namely, it can eliminate the requirement for large amounts of annotated training data and can provide valuable intuition lacking in supervised approaches. However, we did not address the fundamental task of lesion/structure-of-interest segmentation. Here we introduce a method combining unsupervised deep learning clustering with reinforcement learning to segment brain lesions on MRI. We initially clustered images using unsupervised deep learning clustering to generate candidate lesion masks for each MRI image. The user then selected the best mask for each of 10 training images. We then trained a reinforcement learning algorithm to select the masks. We tested the corresponding trained deep Q network on a separate testing set of 10 images. For comparison, we also trained and tested a U-net supervised deep learning network on the same set of training/testing images. Whereas the supervised approach quickly overfits the training data and predictably performed poorly on the testing set (16% average Dice score), the unsupervised deep clustering and reinforcement learning achieved an average Dice score of 83%. We have demonstrated a proof-of-principle application of unsupervised deep clustering and reinforcement learning to segment brain tumors. The approach represents human-allied AI that requires minimal input from the radiologist without the need for hand-traced annotation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Achanta et al., SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012) R. Achanta et al., SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
2.
go back to reference V. Buhrmester, D. Münch, M. Arens, Analysis of explainers of black box deep neural networks for computer vision: a survey (2019). arXiv:1911.12116 V. Buhrmester, D. Münch, M. Arens, Analysis of explainers of black box deep neural networks for computer vision: a survey (2019). arXiv:​1911.​12116
3.
go back to reference G. Chartrand et al., Deep learning: a primer for radiologists. Radiographics 37(7), 2113–2131 (2017) G. Chartrand et al., Deep learning: a primer for radiologists. Radiographics 37(7), 2113–2131 (2017)
4.
go back to reference L.C.H. Da Cruz et al., Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. Am. J. Neuroradiol. 32(11), 1978–1985 (2011) L.C.H. Da Cruz et al., Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. Am. J. Neuroradiol. 32(11), 1978–1985 (2011)
7.
go back to reference K. He et al., Mask r-cnn, in Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 2961–2969 K. He et al., Mask r-cnn, in Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 2961–2969
9.
go back to reference X. Liu et al., A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit. Health 1(6), e271–e297 (2019) X. Liu et al., A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit. Health 1(6), e271–e297 (2019)
10.
go back to reference M.A. Mazurowski et al., Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J. Magn. Reson. Imaging 49(4). 939–954 (2019) M.A. Mazurowski et al., Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J. Magn. Reson. Imaging 49(4). 939–954 (2019)
11.
go back to reference M.P. McBee et al., Deep learning in radiology. Acad. Radiol. 25(11), 1472–1480 (2018) M.P. McBee et al., Deep learning in radiology. Acad. Radiol. 25(11), 1472–1480 (2018)
14.
go back to reference A. Radbruch et al., Relevance of T2 signal changes in the assessment of progression of glioblastoma according to the response assessment in neurooncology criteria. Neuro-oncology 14(2), 222–229 (2011) A. Radbruch et al., Relevance of T2 signal changes in the assessment of progression of glioblastoma according to the response assessment in neurooncology criteria. Neuro-oncology 14(2), 222–229 (2011)
15.
go back to reference O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2015), pp. 234–241 O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2015), pp. 234–241
16.
go back to reference L. Saba et al., The present and future of deep learning in radiology. Eur. J. Radiol. 114, 14–24 (2019) L. Saba et al., The present and future of deep learning in radiology. Eur. J. Radiol. 114, 14–24 (2019)
18.
go back to reference A. Smits et al., Neurological impairment linked with cortico-subcortical infiltration of diffuse low-grade gliomas at initial diagnosis supports early brain plasticity. Front. Neurol. 6, 137 (2015) A. Smits et al., Neurological impairment linked with cortico-subcortical infiltration of diffuse low-grade gliomas at initial diagnosis supports early brain plasticity. Front. Neurol. 6, 137 (2015)
19.
go back to reference J. Stember, H. Shalu, Deep reinforcement learning to detect brain lesions on MRI: a proof-of-concept application of reinforcement learning to medical images (2020). arXiv:2008.02708 J. Stember, H. Shalu, Deep reinforcement learning to detect brain lesions on MRI: a proof-of-concept application of reinforcement learning to medical images (2020). arXiv:​2008.​02708
20.
go back to reference J.N. Stember, H. Shalu, Reinforcement learning using Deep Q networks and Q learning accurately localizes brain tumors on MRI with very small training sets (2020). arXiv:2010.10763 J.N. Stember, H. Shalu, Reinforcement learning using Deep Q networks and Q learning accurately localizes brain tumors on MRI with very small training sets (2020). arXiv:​2010.​10763
21.
go back to reference J.N. Stember et al., Convolutional neural networks for the detection and measurement of cerebral aneurysms on magnetic resonance angiography. J. Digit. Imaging 32(5), 808–815 (2019) J.N. Stember et al., Convolutional neural networks for the detection and measurement of cerebral aneurysms on magnetic resonance angiography. J. Digit. Imaging 32(5), 808–815 (2019)
22.
go back to reference J.N. Stember et al., Eye tracking for deep learning segmentation using convolutional neural networks. J. Digit. Imaging 32(4), 597–604 (2019) J.N. Stember et al., Eye tracking for deep learning segmentation using convolutional neural networks. J. Digit. Imaging 32(4), 597–604 (2019)
23.
go back to reference R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, 2018) R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, 2018)
24.
go back to reference X. Wang et al., Inconsistent performance of deep learning models on mammogram classification. J. Am. Coll. Radiol. (2020) X. Wang et al., Inconsistent performance of deep learning models on mammogram classification. J. Am. Coll. Radiol. (2020)
25.
go back to reference P.Y. Wen et al., Response assessment in neuro-oncology clinical trials. J. Clin. Oncol. 35(21), 2439 (2017) P.Y. Wen et al., Response assessment in neuro-oncology clinical trials. J. Clin. Oncol. 35(21), 2439 (2017)
26.
go back to reference J. Yang, D. Parikh, D. Batra, Joint unsupervised learning of deep representations and image clusters, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 5147–5156 J. Yang, D. Parikh, D. Batra, Joint unsupervised learning of deep representations and image clusters, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 5147–5156
27.
go back to reference J. Zhang et al., Clinical applications of contrast-enhanced perfusion MRI techniques in gliomas: recent advances and current challenges, in Contrast Media & Molecular Imaging 2017 (2017) J. Zhang et al., Clinical applications of contrast-enhanced perfusion MRI techniques in gliomas: recent advances and current challenges, in Contrast Media & Molecular Imaging 2017 (2017)
Metadata
Title
Unsupervised Deep Clustering and Reinforcement Learning Can Accurately Segment MRI Brain Tumors with Very Small Training Sets
Authors
Joseph N. Stember
Hrithwik Shalu
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-8094-7_19