Skip to main content
Top
Published in: Neural Processing Letters 2/2020

05-08-2020

Unsupervised Optical Flow Estimation Based on Improved Feature Pyramid

Authors: Bo Yang, Huan Xie, Hongbin Li, Nuohan Li, Anchang Liu, Zhigang Ren, Kuan Ye, Rong Zhu, Xuezhi Xiang

Published in: Neural Processing Letters | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep learning methods for optical flow estimation usually increase the receptive field of convolution through reducing image resolution, which results in loss of spatial detail information during feature extraction. In this paper, we introduce dilated convolution into feature pyramid network, which can extract multi-scale features containing more motion details and can further improve the accuracy of optical flow estimation. The unsupervised loss function is based on forward–backward consistency check and robust census transform that has a good constraint performance in the case of illumination changes, which can train an unsupervised learning optical flow model with higher accuracy. Our network is trained on FlyingChairs and KITTI raw datasets with an unsupervised manner and tested on MPI-Sintel, KITTI 2012 and KITTI 2015 benchmarks. The experimental results show the advantages of our method in unsupervised learning approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Horn B, Schunck B (1981) Determining optical flow. Artif Intell 17:185–203CrossRef Horn B, Schunck B (1981) Determining optical flow. Artif Intell 17:185–203CrossRef
2.
go back to reference Dakhia A, Wang T, Lu H (2019) Multi-scale pyramid pooling network for salient object detection. Neurocomputing 333:211–220CrossRef Dakhia A, Wang T, Lu H (2019) Multi-scale pyramid pooling network for salient object detection. Neurocomputing 333:211–220CrossRef
3.
go back to reference Xu W, Liu W, Huang X, Yang J, Qiu S (2018) Multi-modal self-paced learning for image classification. Neurocomputing 309:134–144CrossRef Xu W, Liu W, Huang X, Yang J, Qiu S (2018) Multi-modal self-paced learning for image classification. Neurocomputing 309:134–144CrossRef
4.
go back to reference Wang F, Ainouz S, Lian C, Bensrhair A (2017) Multimodality semantic segmentation based on polarization and color images. Neurocomputing 253:1–9CrossRef Wang F, Ainouz S, Lian C, Bensrhair A (2017) Multimodality semantic segmentation based on polarization and color images. Neurocomputing 253:1–9CrossRef
5.
go back to reference Dosovitskiy A, Fischer P, Ilg E, Häusser P, Hazirbas C, Golkov V, Smagt P. v. d, Cremers D, Brox T (2015) FlowNet: learning optical flow with convolutional networks. In: 2015 IEEE international conference on computer vision (ICCV), pp 2758–2766 Dosovitskiy A, Fischer P, Ilg E, Häusser P, Hazirbas C, Golkov V, Smagt P. v. d, Cremers D, Brox T (2015) FlowNet: learning optical flow with convolutional networks. In: 2015 IEEE international conference on computer vision (ICCV), pp 2758–2766
6.
go back to reference Ilg E, Mayer N, Saikia T, Keuper M, Dosovitskiy A, Brox T (2017) Flownet 2.0: evolution of optical flow estimation with deep networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 1647–1655 Ilg E, Mayer N, Saikia T, Keuper M, Dosovitskiy A, Brox T (2017) Flownet 2.0: evolution of optical flow estimation with deep networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 1647–1655
7.
go back to reference Ranjan A, Black MJ (2017) Optical flow estimation using a spatial pyramid network. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 2720–2729 Ranjan A, Black MJ (2017) Optical flow estimation using a spatial pyramid network. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 2720–2729
8.
go back to reference Sun D, Yang X, Liu M, Kautz J (2018) PWC-net: CNNs for optical flow using pyramid, warping, and cost volume. In: 2018 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 8934–8943 Sun D, Yang X, Liu M, Kautz J (2018) PWC-net: CNNs for optical flow using pyramid, warping, and cost volume. In: 2018 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 8934–8943
9.
go back to reference Ahmadi A, Patras I (2016) Unsupervised convolutional neural networks for motion estimation. In: 2016 IEEE international conference on image processing (ICIP), pp 1629–1633 Ahmadi A, Patras I (2016) Unsupervised convolutional neural networks for motion estimation. In: 2016 IEEE international conference on image processing (ICIP), pp 1629–1633
10.
go back to reference Yu J, Harley A, Derpanis K (2016) Back to basics: unsupervised learning of optical flow via brightness constancy and motion smoothness. In: European conference on computer visio, pp 3–10 Yu J, Harley A, Derpanis K (2016) Back to basics: unsupervised learning of optical flow via brightness constancy and motion smoothness. In: European conference on computer visio, pp 3–10
11.
go back to reference Zhu Y, Newsam S (2017) Densenet for dense flow. In: 2017 IEEE international conference on image processing (ICIP), pp 790–794 Zhu Y, Newsam S (2017) Densenet for dense flow. In: 2017 IEEE international conference on image processing (ICIP), pp 790–794
12.
go back to reference Huang G, Liu Z, van der Maaten L (2017) Weinberger KQ, Densely connected convolutional networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 2261–2269 Huang G, Liu Z, van der Maaten L (2017) Weinberger KQ, Densely connected convolutional networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 2261–2269
13.
go back to reference Ren Z, Yan J, Ni B, Liu B, Yang X, Zha H (2017) Unsupervised deep learning for optical flow estimation. In: AAAI conference on artificial intelligence, San Francisco, California Ren Z, Yan J, Ni B, Liu B, Yang X, Zha H (2017) Unsupervised deep learning for optical flow estimation. In: AAAI conference on artificial intelligence, San Francisco, California
14.
go back to reference Meister S, Hur J, Roth S (2018) UnFlow: unsupervised learning of optical flow with a bidirectional census loss. In: AAAI conference on artificial intelligence, New Orleans, Louisiana Meister S, Hur J, Roth S (2018) UnFlow: unsupervised learning of optical flow with a bidirectional census loss. In: AAAI conference on artificial intelligence, New Orleans, Louisiana
15.
go back to reference Wang Y, Yang Y, Yang Z, Zhao L, Wang P, Xu W (2018) Occlusion aware unsupervised learning of optical flow. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 4884–4893 Wang Y, Yang Y, Yang Z, Zhao L, Wang P, Xu W (2018) Occlusion aware unsupervised learning of optical flow. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 4884–4893
16.
go back to reference Liu P, King I, Lyu M R, Xu J (2019) DDFlow: learning optical flow with unlabeled data distillation. In: The thirty-third AAAI conference on artificial intelligence, pp 8770–8777 Liu P, King I, Lyu M R, Xu J (2019) DDFlow: learning optical flow with unlabeled data distillation. In: The thirty-third AAAI conference on artificial intelligence, pp 8770–8777
17.
go back to reference Hafner D, Demetz O, Weickert J (2013) Why is the census transform good for robust optic flow computation? In: Scale space and variational methods in computer vision: 4th international conference, pp 210–221 Hafner D, Demetz O, Weickert J (2013) Why is the census transform good for robust optic flow computation? In: Scale space and variational methods in computer vision: 4th international conference, pp 210–221
18.
go back to reference Tretiak O, Pastor L (1984) Velocity estimation from image sequences with second order differential operators. In: Proceedings of IEEE international conference on pattern recognition, pp 16–19 Tretiak O, Pastor L (1984) Velocity estimation from image sequences with second order differential operators. In: Proceedings of IEEE international conference on pattern recognition, pp 16–19
19.
go back to reference Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: Conference paper in lecture notes in computer science, pp 25–36 Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: Conference paper in lecture notes in computer science, pp 25–36
20.
go back to reference Bruhn A, Weickert J, Schnorr C (2005) Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int J Comput Vis 61(3):211–231CrossRef Bruhn A, Weickert J, Schnorr C (2005) Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int J Comput Vis 61(3):211–231CrossRef
21.
go back to reference Papenberg N, Bruhn A, Brox T, Didas S, Weickert J (2006) Highly accurate optic flow computation with theoretically justified warping. Int J Comput Vis 67(2):141–158CrossRef Papenberg N, Bruhn A, Brox T, Didas S, Weickert J (2006) Highly accurate optic flow computation with theoretically justified warping. Int J Comput Vis 67(2):141–158CrossRef
22.
go back to reference Brox T, Malik J (2011) Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans Pattern Anal Mach Intell 33(3):500–513CrossRef Brox T, Malik J (2011) Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans Pattern Anal Mach Intell 33(3):500–513CrossRef
23.
go back to reference Weinzaepfel P, Revaud J, Harchaoui Z, Schmid C (2013) Deepflow: large displacement optical flow with deep matching. In: 2013 IEEE international conference on computer vision, pp 1385–1392 Weinzaepfel P, Revaud J, Harchaoui Z, Schmid C (2013) Deepflow: large displacement optical flow with deep matching. In: 2013 IEEE international conference on computer vision, pp 1385–1392
24.
go back to reference Revaud J, Weinzaepfel P, Harchaoui Z, Schmid C (2015) EpicFlow: edge-preserving interpolation of correspondences for optical flow. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 1164–1172 Revaud J, Weinzaepfel P, Harchaoui Z, Schmid C (2015) EpicFlow: edge-preserving interpolation of correspondences for optical flow. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 1164–1172
25.
go back to reference Nagel H, Enkelmann W (1986) An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. In: IEEE transactions on pattern analysis and machine intelligence PAMI-8(5), pp 565–593 Nagel H, Enkelmann W (1986) An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. In: IEEE transactions on pattern analysis and machine intelligence PAMI-8(5), pp 565–593
26.
go back to reference Sun D, Roth S, Black MJ (2010) Secrets of optical flow estimation and their principles. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp 2432–2439 Sun D, Roth S, Black MJ (2010) Secrets of optical flow estimation and their principles. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp 2432–2439
27.
go back to reference Hua M, Bie X, Zhang M, Wang W (2014) Edge-aware gradient domain optimization framework for image filtering by local propagation. In: 2014 IEEE conference on computer vision and pattern recognition, pp 2838–2845 Hua M, Bie X, Zhang M, Wang W (2014) Edge-aware gradient domain optimization framework for image filtering by local propagation. In: 2014 IEEE conference on computer vision and pattern recognition, pp 2838–2845
28.
go back to reference Cheng J, Tsai Y, Wang S, Yang M (2017) Segflow: joint learning for video object segmentation and optical flow. In: 2017 IEEE international conference on computer vision (ICCV), pp 686–695 Cheng J, Tsai Y, Wang S, Yang M (2017) Segflow: joint learning for video object segmentation and optical flow. In: 2017 IEEE international conference on computer vision (ICCV), pp 686–695
29.
go back to reference Gadot D, Wolf L (2016) PatchBatch: a batch augmented loss for optical flow. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 4236–4245 Gadot D, Wolf L (2016) PatchBatch: a batch augmented loss for optical flow. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 4236–4245
30.
go back to reference Guney F, Geiger A, Lai SH, Lepetit V, Nishino K, Sato Y (2017) Deep discrete flow, computer vision—ACCV 2016. Springer, Berlin, pp 207–224CrossRef Guney F, Geiger A, Lai SH, Lepetit V, Nishino K, Sato Y (2017) Deep discrete flow, computer vision—ACCV 2016. Springer, Berlin, pp 207–224CrossRef
31.
go back to reference Dai J, Huang S, Nguyen T (2018) Pyramid structured optical flow learning with motion cues. In: 2018 25th IEEE international conference on image processing (ICIP), pp 3338–3342 Dai J, Huang S, Nguyen T (2018) Pyramid structured optical flow learning with motion cues. In: 2018 25th IEEE international conference on image processing (ICIP), pp 3338–3342
32.
go back to reference Hu P, Wang G, Tan Y (2018) Recurrent spatial pyramid cnn for optical flow estimation. IEEE Trans Multimedia 20(10):2814–2823CrossRef Hu P, Wang G, Tan Y (2018) Recurrent spatial pyramid cnn for optical flow estimation. IEEE Trans Multimedia 20(10):2814–2823CrossRef
Metadata
Title
Unsupervised Optical Flow Estimation Based on Improved Feature Pyramid
Authors
Bo Yang
Huan Xie
Hongbin Li
Nuohan Li
Anchang Liu
Zhigang Ren
Kuan Ye
Rong Zhu
Xuezhi Xiang
Publication date
05-08-2020
Publisher
Springer US
Published in
Neural Processing Letters / Issue 2/2020
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-020-10328-2

Other articles of this Issue 2/2020

Neural Processing Letters 2/2020 Go to the issue