Skip to main content
Top

2016 | OriginalPaper | Chapter

10. Upconversion Luminescence Behavior of Single Nanoparticles

Authors : Jiajia Zhou, Jianrong Qiu

Published in: Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Upconversion nanoparticles (UCNPs) have made a significant and valuable contribution to materials science, photophysics, and biomedicine, which benefit from their specific spectroscopic characters. However, the ensemble spectroscopy of UCNPs is limited for the electronic behavior in average effect, which ignores the fact that the nanoparticles are heterogeneous. Toward the research focus of heterogeneous intrinsic structure, unique photophysical phenomena, and advanced applications, the optical characterization of single UCNPs is promoted to a frontier breakthrough of UCNPs community. In this chapter, we overview the importance of the single UCNPs characterization, the typical principles of upconversion, and the single particle detection approaches. A considerable emphasis is placed on the specific spectroscopic study of single UCNPs, which shows us fantastic photophysical phenomena beyond ensemble measurement. Parallel efforts are devoted to the currently applications of single UCNPs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Heer S, Kömpe K, Güdel HU, Haase M (2004) Highly efficient multicolour upconversion emission in transparent colloids of lanthanide‐doped NaYF4 nanocrystals. Adv Mater 16: 2102. Heer S, Kömpe K, Güdel HU, Haase M (2004) Highly efficient multicolour upconversion emission in transparent colloids of lanthanide‐doped NaYF4 nanocrystals. Adv Mater 16: 2102.
2.
go back to reference Mai H-X, Zhang Y-W, Sun L-D, Yan C-H (2007) Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4: Yb, Er core and core/shell-structured nanocrystals. J Phys Chem C 111: 13721. Mai H-X, Zhang Y-W, Sun L-D, Yan C-H (2007) Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4: Yb, Er core and core/shell-structured nanocrystals. J Phys Chem C 111: 13721.
3.
go back to reference Wang L, Li Y (2006) Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett 6: 1645. Wang L, Li Y (2006) Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett 6: 1645.
4.
go back to reference Ehlert O, Thomann R, Darbandi M, Nann T (2008) A four-color colloidal multiplexing nanoparticle system. ACS nano 2: 120. Ehlert O, Thomann R, Darbandi M, Nann T (2008) A four-color colloidal multiplexing nanoparticle system. ACS nano 2: 120.
5.
go back to reference Wang F, Liu XG (2008) Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc 130: 5642. Wang F, Liu XG (2008) Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc 130: 5642.
6.
go back to reference Wang J, Wang F, Wang C, Liu Z, Liu XG (2011) Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew Chem Int Ed 50: 10369. Wang J, Wang F, Wang C, Liu Z, Liu XG (2011) Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew Chem Int Ed 50: 10369.
7.
go back to reference Chan EM, Han G, Goldberg JD, et al. (2012) Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission. Nano Lett 12: 3839. Chan EM, Han G, Goldberg JD, et al. (2012) Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission. Nano Lett 12: 3839.
8.
go back to reference Chen D, Lei L, Zhang R, Yang A, Xu J, Wang Y (2012) Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm):Na3Zr(Hf)F7 nanocrystals. Chem Commun 48: 10630. Chen D, Lei L, Zhang R, Yang A, Xu J, Wang Y (2012) Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm):Na3Zr(Hf)F7 nanocrystals. Chem Commun 48: 10630.
9.
go back to reference Tian G, Gu Z, Zhou L, et al. (2012) Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater 24: 1226. Tian G, Gu Z, Zhou L, et al. (2012) Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater 24: 1226.
10.
go back to reference Shan GB, Demopoulos GP (2010) Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv Mater 22: 4373. Shan GB, Demopoulos GP (2010) Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv Mater 22: 4373.
11.
go back to reference Liang L, Liu Y, Bu C, et al. (2013) Highly uniform, bifunctional core/double-shell-structured beta-NaYF4:Er3+,Yb3+@SiO2@TiO2 hexagonal sub-microprisms for high-performance dye sensitized solar cells. Adv Mater 25: 2174. Liang L, Liu Y, Bu C, et al. (2013) Highly uniform, bifunctional core/double-shell-structured beta-NaYF4:Er3+,Yb3+@SiO2@TiO2 hexagonal sub-microprisms for high-performance dye sensitized solar cells. Adv Mater 25: 2174.
12.
go back to reference Chang J, Ning YH, Wu SL, Niu WB, Zhang SF (2013) Effectively utilizing NIR light using direct electron injection from up-conversion nanoparticles to the TiO2 photoanode in dye-sensitized solar cells. Adv Funct Mater 23: 5910. Chang J, Ning YH, Wu SL, Niu WB, Zhang SF (2013) Effectively utilizing NIR light using direct electron injection from up-conversion nanoparticles to the TiO2 photoanode in dye-sensitized solar cells. Adv Funct Mater 23: 5910.
13.
go back to reference Wang F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38: 976. Wang F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38: 976.
14.
go back to reference Zhou J, Liu Z, Li FY (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41: 1323. Zhou J, Liu Z, Li FY (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41: 1323.
15.
go back to reference Cheng L, Wang C, Liu Z (2013) Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5: 23. Cheng L, Wang C, Liu Z (2013) Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5: 23.
16.
go back to reference Chatterjee DK, Gnanasammandhan MK, Zhang Y (2010) Small upconverting fluorescent nanoparticles for biomedical applications. Small 6: 2781. Chatterjee DK, Gnanasammandhan MK, Zhang Y (2010) Small upconverting fluorescent nanoparticles for biomedical applications. Small 6: 2781.
17.
go back to reference Wang F, Banerjee D, Liu YS, Chen XY, Liu XG (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135: 1839. Wang F, Banerjee D, Liu YS, Chen XY, Liu XG (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135: 1839.
18.
go back to reference Gorris HH, Wolfbeis OS (2013) Photon‐upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew Chem Int Ed 52: 3584. Gorris HH, Wolfbeis OS (2013) Photon‐upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew Chem Int Ed 52: 3584.
19.
go back to reference Haase M, Schafer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50: 5808. Haase M, Schafer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50: 5808.
20.
go back to reference Fernee MJ, Tamarat P, Lounis B (2014) Spectroscopy of single nanocrystals. Chem Soc Rev 43: 1311. Fernee MJ, Tamarat P, Lounis B (2014) Spectroscopy of single nanocrystals. Chem Soc Rev 43: 1311.
21.
go back to reference Sonntag MD, Klingsporn JM, Zrimsek AB, Sharma B, Ruvuna LK, Van Duyne RP (2014) Molecular plasmonics for nanoscale spectroscopy. Chem Soc Rev 43: 1230. Sonntag MD, Klingsporn JM, Zrimsek AB, Sharma B, Ruvuna LK, Van Duyne RP (2014) Molecular plasmonics for nanoscale spectroscopy. Chem Soc Rev 43: 1230.
22.
go back to reference Cui J, Beyler AP, Bischof TS, Wilson MW, Bawendi MG (2014) Deconstructing the photon stream from single nanocrystals: From binning to correlation. Chem Soc Rev 43: 1287. Cui J, Beyler AP, Bischof TS, Wilson MW, Bawendi MG (2014) Deconstructing the photon stream from single nanocrystals: From binning to correlation. Chem Soc Rev 43: 1287.
23.
go back to reference Empedocles SA, Neuhauser R, Shimizu K, Bawendi MG (1999) Photoluminescence from single semiconductor nanostructures. Adv Mater 11: 1243. Empedocles SA, Neuhauser R, Shimizu K, Bawendi MG (1999) Photoluminescence from single semiconductor nanostructures. Adv Mater 11: 1243.
24.
go back to reference Blanton SA, Hines MA, Guyot-Sionnest P (1996) Photoluminescence wandering in single CdSe nanocrystals. Appl Phys Lett 69: 3905. Blanton SA, Hines MA, Guyot-Sionnest P (1996) Photoluminescence wandering in single CdSe nanocrystals. Appl Phys Lett 69: 3905.
25.
go back to reference Nirmal M, Dabbousi B, Bawendi M, et al. (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383: 802. Nirmal M, Dabbousi B, Bawendi M, et al. (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383: 802.
26.
go back to reference Empedocles S, Bawendi M (1997) Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 278: 2114. Empedocles S, Bawendi M (1997) Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 278: 2114.
27.
go back to reference Huang X, Han S, Huang W, Liu X (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42: 173. Huang X, Han S, Huang W, Liu X (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42: 173.
28.
go back to reference Auzel F (2004) Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 104: 139. Auzel F (2004) Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 104: 139.
29.
go back to reference Wang HQ, Batentschuk M, Osvet A, Pinna L, Brabec CJ (2011) Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv Mater 23: 2675. Wang HQ, Batentschuk M, Osvet A, Pinna L, Brabec CJ (2011) Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv Mater 23: 2675.
30.
go back to reference Trupke T, Green M, Würfel P (2002) Improving solar cell efficiencies by up-conversion of sub-band-gap light. J Appl Phys 92: 4117. Trupke T, Green M, Würfel P (2002) Improving solar cell efficiencies by up-conversion of sub-band-gap light. J Appl Phys 92: 4117.
31.
go back to reference de Wild J, Meijerink A, Rath JK, van Sark WGJHM, Schropp REI (2011) Upconverter solar cells: materials and applications. Energ Environ Sci 4: 4835. de Wild J, Meijerink A, Rath JK, van Sark WGJHM, Schropp REI (2011) Upconverter solar cells: materials and applications. Energ Environ Sci 4: 4835.
32.
go back to reference Wang F, Deng RR, Wang J, et al. (2011) Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater 10: 968. Wang F, Deng RR, Wang J, et al. (2011) Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater 10: 968.
33.
go back to reference Vetrone F, Naccache R, Zamarron A, et al. (2010) Temperature sensing using fluorescent nanothermometers. ACS nano 4: 3254. Vetrone F, Naccache R, Zamarron A, et al. (2010) Temperature sensing using fluorescent nanothermometers. ACS nano 4: 3254.
34.
go back to reference Wang F, Han Y, Lim CS, et al. (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463: 1061. Wang F, Han Y, Lim CS, et al. (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463: 1061.
35.
go back to reference Wang F, Wang JA, Liu XG (2010) Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed 49: 7456. Wang F, Wang JA, Liu XG (2010) Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed 49: 7456.
36.
go back to reference Yang YM, Shao Q, Deng RR, et al. (2012) In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew Chem Int Ed 51: 3125. Yang YM, Shao Q, Deng RR, et al. (2012) In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew Chem Int Ed 51: 3125.
37.
go back to reference Deng RR, Xie XJ, Vendrell M, Chang YT, Liu XG (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133: 20168. Deng RR, Xie XJ, Vendrell M, Chang YT, Liu XG (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133: 20168.
38.
go back to reference Xue XJ, Wang F, Liu XG (2011) Emerging functional nanomaterials for therapeutics. J Mater Chem 21: 13107. Xue XJ, Wang F, Liu XG (2011) Emerging functional nanomaterials for therapeutics. J Mater Chem 21: 13107.
39.
go back to reference Downing E, Hesselink L, Ralston J, Macfarlane R (1996) A three-color, solid-state, three-dimensional display. Science 273: 1185. Downing E, Hesselink L, Ralston J, Macfarlane R (1996) A three-color, solid-state, three-dimensional display. Science 273: 1185.
40.
go back to reference Wang G, Peng Q, Li Y (2011) Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc Chem Res 44: 322. Wang G, Peng Q, Li Y (2011) Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc Chem Res 44: 322.
41.
go back to reference Fischer LH, Harms GS, Wolfbeis OS (2011) Upconverting nanoparticles for nanoscale thermometry. Angew Chem Int Ed 50: 4546. Fischer LH, Harms GS, Wolfbeis OS (2011) Upconverting nanoparticles for nanoscale thermometry. Angew Chem Int Ed 50: 4546.
42.
go back to reference Zhou J, Liu Z, Li F (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41: 1323. Zhou J, Liu Z, Li F (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41: 1323.
43.
go back to reference Li C, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20: 6831. Li C, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20: 6831.
44.
go back to reference Haase M, Schäfer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50: 5808. Haase M, Schäfer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50: 5808.
45.
go back to reference Ju Q, Tu D, Liu Y, et al. (2011) Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J Am Chem Soc 134: 1323. Ju Q, Tu D, Liu Y, et al. (2011) Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J Am Chem Soc 134: 1323.
46.
go back to reference Tu D, Liu L, Ju Q, et al. (2011) Time‐resolved FRET biosensor based on amine‐functionalized lanthanide‐doped NaYF4 nanocrystals. Angew Chem Int Ed 50: 6306. Tu D, Liu L, Ju Q, et al. (2011) Time‐resolved FRET biosensor based on amine‐functionalized lanthanide‐doped NaYF4 nanocrystals. Angew Chem Int Ed 50: 6306.
47.
go back to reference Mader HS, Kele P, Saleh SM, Wolfbeis OS (2010) Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr Opin Chem Biol 14: 582. Mader HS, Kele P, Saleh SM, Wolfbeis OS (2010) Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr Opin Chem Biol 14: 582.
48.
go back to reference Yan C, Dadvand A, Rosei F, Perepichka DF (2010) Near-IR photoresponse in new up-converting CdSe/NaYF4: Yb, Er nanoheterostructures. J Am Chem Soc 132: 8868. Yan C, Dadvand A, Rosei F, Perepichka DF (2010) Near-IR photoresponse in new up-converting CdSe/NaYF4: Yb, Er nanoheterostructures. J Am Chem Soc 132: 8868.
49.
go back to reference Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11: 835. Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11: 835.
50.
go back to reference Ye X, Collins JE, Kang Y, et al. (2010) Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc Natl Acad Sci USA 107: 22430. Ye X, Collins JE, Kang Y, et al. (2010) Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc Natl Acad Sci USA 107: 22430.
51.
go back to reference Chen F, Bu W, Zhang S, et al. (2011) Positive and negative lattice shielding effects co‐existing in Gd (III) ion doped bifunctional upconversion nanoprobes. Adv Funct Mater 21: 4285. Chen F, Bu W, Zhang S, et al. (2011) Positive and negative lattice shielding effects co‐existing in Gd (III) ion doped bifunctional upconversion nanoprobes. Adv Funct Mater 21: 4285.
52.
go back to reference Zhang F, Braun GB, Pallaoro A, et al. (2011) Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett 12: 61. Zhang F, Braun GB, Pallaoro A, et al. (2011) Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett 12: 61.
53.
go back to reference Cheng L, Yang K, Li Y, et al. (2012) Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33: 2215. Cheng L, Yang K, Li Y, et al. (2012) Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33: 2215.
54.
go back to reference Bouzigues C, Gacoin T, Alexandrou A (2011) Biological applications of rare-earth based nanoparticles. ACS nano 5: 8488. Bouzigues C, Gacoin T, Alexandrou A (2011) Biological applications of rare-earth based nanoparticles. ACS nano 5: 8488.
55.
go back to reference Jayakumar MKG, Idris NM, Zhang Y (2012) Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc Natl Acad Sci USA 109: 8483. Jayakumar MKG, Idris NM, Zhang Y (2012) Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc Natl Acad Sci USA 109: 8483.
56.
go back to reference Zhou J-C, Yang Z-L, Dong W, Tang R-J, Sun L-D, Yan C-H (2011) Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4: Yb, Tm nanocrystals. Biomaterials 32: 9059. Zhou J-C, Yang Z-L, Dong W, Tang R-J, Sun L-D, Yan C-H (2011) Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4: Yb, Tm nanocrystals. Biomaterials 32: 9059.
57.
go back to reference Zeng S, Xiao J, Yang Q, Hao J (2012) Bi-functional NaLuF4: Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties. J Mater Chem 22: 9870. Zeng S, Xiao J, Yang Q, Hao J (2012) Bi-functional NaLuF4: Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties. J Mater Chem 22: 9870.
58.
go back to reference Ren W, Tian G, Zhou L, et al. (2012) Lanthanide ion-doped GdPO4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties. Nanoscale 4: 3754. Ren W, Tian G, Zhou L, et al. (2012) Lanthanide ion-doped GdPO4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties. Nanoscale 4: 3754.
59.
go back to reference Chen F, Zhang S, Bu W, et al. (2012) A uniform sub‐50 nm‐sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser. Chem-Eur J 18: 7082. Chen F, Zhang S, Bu W, et al. (2012) A uniform sub‐50 nm‐sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser. Chem-Eur J 18: 7082.
60.
go back to reference Wei Y, Chen Q, Wu B, Zhou A, Xing D (2012) High-sensitivity in vivo imaging for tumors using a spectral up-conversion nanoparticle NaYF4: Yb3+, Er3+ in cooperation with a microtubulin inhibitor. Nanoscale 4: 3901. Wei Y, Chen Q, Wu B, Zhou A, Xing D (2012) High-sensitivity in vivo imaging for tumors using a spectral up-conversion nanoparticle NaYF4: Yb3+, Er3+ in cooperation with a microtubulin inhibitor. Nanoscale 4: 3901.
61.
go back to reference Wu S, Duan N, Ma X, et al. (2012) Simultaneous detection of enterovirus 71 and coxsackievirus A16 using dual-colour upconversion luminescent nanoparticles as labels. Chem. Commun. 48: 4866. Wu S, Duan N, Ma X, et al. (2012) Simultaneous detection of enterovirus 71 and coxsackievirus A16 using dual-colour upconversion luminescent nanoparticles as labels. Chem. Commun. 48: 4866.
62.
go back to reference Li LL, Zhang R, Yin L, et al. (2012) Biomimetic surface engineering of lanthanide‐doped upconversion nanoparticles as versatile bioprobes. Angew Chem Int Ed 124: 6225. Li LL, Zhang R, Yin L, et al. (2012) Biomimetic surface engineering of lanthanide‐doped upconversion nanoparticles as versatile bioprobes. Angew Chem Int Ed 124: 6225.
63.
go back to reference Wei W, He T, Teng X, et al. (2012) Nanocomposites of graphene oxide and upconversion rare‐earth nanocrystals with superior optical limiting performance. Small 8: 2271. Wei W, He T, Teng X, et al. (2012) Nanocomposites of graphene oxide and upconversion rare‐earth nanocrystals with superior optical limiting performance. Small 8: 2271.
64.
go back to reference Liu Q, Sun Y, Yang T, Feng W, Li C, Li F (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc 133: 17122. Liu Q, Sun Y, Yang T, Feng W, Li C, Li F (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc 133: 17122.
65.
go back to reference Mor FM, Sienkiewicz A, Forro L, Jeney S (2014) Upconversion particle as a local luminescent brownian probe: a photonic force microscopy study. Acs Photonics 1: 1251. Mor FM, Sienkiewicz A, Forro L, Jeney S (2014) Upconversion particle as a local luminescent brownian probe: a photonic force microscopy study. Acs Photonics 1: 1251.
66.
go back to reference Gu FX, Zeng HP, Zhu YB, Yang Q, Ang LK, Zhuang SL (2014) Single-crystal Pd and its alloy nanowires for plasmon propagation and highly sensitive hydrogen detection. Adv Opt Mater 2: 189. Gu FX, Zeng HP, Zhu YB, Yang Q, Ang LK, Zhuang SL (2014) Single-crystal Pd and its alloy nanowires for plasmon propagation and highly sensitive hydrogen detection. Adv Opt Mater 2: 189.
67.
go back to reference Park YI, Lee KT, Suh YD, Hyeon T (2014) Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem Soc Rev 44: 1302. Park YI, Lee KT, Suh YD, Hyeon T (2014) Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem Soc Rev 44: 1302.
68.
go back to reference Park YI, Kim JH, Lee KT, et al. (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 21: 4467. Park YI, Kim JH, Lee KT, et al. (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 21: 4467.
69.
go back to reference Wu SW, Han G, Milliron DJ, et al. (2009) Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci USA 106: 10917. Wu SW, Han G, Milliron DJ, et al. (2009) Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci USA 106: 10917.
70.
go back to reference Schietinger S, Menezes LD, Lauritzen B, Benson O (2009) Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals. Nano Lett 9: 2477. Schietinger S, Menezes LD, Lauritzen B, Benson O (2009) Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals. Nano Lett 9: 2477.
71.
go back to reference Schietinger S, Aichele T, Wang HQ, Nann T, Benson O (2010) Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett 10: 134. Schietinger S, Aichele T, Wang HQ, Nann T, Benson O (2010) Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett 10: 134.
72.
go back to reference Zhou JJ, Chen GX, Wu E, et al. (2013) Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 Single nanorod. Nano Lett 13: 2241. Zhou JJ, Chen GX, Wu E, et al. (2013) Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 Single nanorod. Nano Lett 13: 2241.
73.
go back to reference Gargas DJ, Chan EM, Ostrowski AD, et al. (2014) Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat Nanotechnol 9: 300. Gargas DJ, Chan EM, Ostrowski AD, et al. (2014) Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat Nanotechnol 9: 300.
74.
go back to reference Kolesov R, Xia K, Reuter R, et al. (2012) Optical detection of a single rare-earth ion in a crystal. Nat Commun 3: 1029. Kolesov R, Xia K, Reuter R, et al. (2012) Optical detection of a single rare-earth ion in a crystal. Nat Commun 3: 1029.
75.
go back to reference Ostrowski AD, Chan EM, Gargas DJ, et al. (2012) Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS nano 6: 2686. Ostrowski AD, Chan EM, Gargas DJ, et al. (2012) Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS nano 6: 2686.
76.
go back to reference Zhao JB, Jin DY, Schartner EP, et al. (2013) Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat Nanotechnol 8: 729. Zhao JB, Jin DY, Schartner EP, et al. (2013) Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat Nanotechnol 8: 729.
77.
go back to reference Warren-Smith SC, Afshar S, Monro TM (2008) Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing. Opt Express 16: 9034. Warren-Smith SC, Afshar S, Monro TM (2008) Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing. Opt Express 16: 9034.
78.
go back to reference Afshar SV, Ruan YL, Warren-Smith SC, Monro TM (2008) Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes. Opt Lett 33: 1473. Afshar SV, Ruan YL, Warren-Smith SC, Monro TM (2008) Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes. Opt Lett 33: 1473.
79.
go back to reference Ruan Y, Schartner EP, Ebendorff-Heidepriem H, Hoffmann P, Monro TM (2007) Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers. Opt Express 15: 17819. Ruan Y, Schartner EP, Ebendorff-Heidepriem H, Hoffmann P, Monro TM (2007) Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers. Opt Express 15: 17819.
80.
go back to reference Schartner EP, Jin DY, Ebendorff-Heidepriem H, Piper JA, Lu ZD, Monro TM (2012) Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization. Nanoscale 4: 7448. Schartner EP, Jin DY, Ebendorff-Heidepriem H, Piper JA, Lu ZD, Monro TM (2012) Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization. Nanoscale 4: 7448.
81.
go back to reference Schartner EP, Jin D, Ebendorff-Heidepriem H, Piper JA, Monro TM (2012) Lanthanide upconversion nanocrystals within microstructured optical fibres; a sensitive platform for biosensing and a new tool for nanocrystal characterisation. Third Asia Pacific Optical Sensors Conference 8351. Schartner EP, Jin D, Ebendorff-Heidepriem H, Piper JA, Monro TM (2012) Lanthanide upconversion nanocrystals within microstructured optical fibres; a sensitive platform for biosensing and a new tool for nanocrystal characterisation. Third Asia Pacific Optical Sensors Conference 8351.
82.
go back to reference Schartner EP, Jin DY, Zhao JB, Monro TM (2013) Sensitive detection of NaYF4: Yb/Tm nanoparticles using suspended core microstructured optical fibers. Colloidal Nanocrystals for Biomedical Applications Viii 8595. Schartner EP, Jin DY, Zhao JB, Monro TM (2013) Sensitive detection of NaYF4: Yb/Tm nanoparticles using suspended core microstructured optical fibers. Colloidal Nanocrystals for Biomedical Applications Viii 8595.
83.
go back to reference Dickson RM, Cubitt AB, Tsien RY, Moerner WE (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388: 355. Dickson RM, Cubitt AB, Tsien RY, Moerner WE (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388: 355.
84.
go back to reference Galland C, Ghosh Y, Steinbruck A, et al. (2011) Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479: 203. Galland C, Ghosh Y, Steinbruck A, et al. (2011) Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479: 203.
85.
go back to reference Barnes M, Mehta A, Thundat T, Bhargava R, Chhabra V, Kulkarni B (2000) On-off blinking and multiple bright states of single europium ions in Eu3+: Y2O3 nanocrystals. J Phys Chem B 104: 6099. Barnes M, Mehta A, Thundat T, Bhargava R, Chhabra V, Kulkarni B (2000) On-off blinking and multiple bright states of single europium ions in Eu3+: Y2O3 nanocrystals. J Phys Chem B 104: 6099.
86.
go back to reference Chen P, Song M, Wu E, et al. (2015) Polarization modulated upconversion luminescence: single particle vs. few-particle aggregates. Nanoscale. Chen P, Song M, Wu E, et al. (2015) Polarization modulated upconversion luminescence: single particle vs. few-particle aggregates. Nanoscale.
87.
go back to reference Wang J, Deng R, MacDonald MA, et al. (2014) Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat Mater 13: 157. Wang J, Deng R, MacDonald MA, et al. (2014) Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat Mater 13: 157.
88.
go back to reference Zhang H, Li Y, Lin Y, Huang Y, Duan X (2011) Composition tuning the upconversion emission in NaYF4:Yb/Tm hexaplate nanocrystals. Nanoscale 3: 963. Zhang H, Li Y, Lin Y, Huang Y, Duan X (2011) Composition tuning the upconversion emission in NaYF4:Yb/Tm hexaplate nanocrystals. Nanoscale 3: 963.
89.
go back to reference Yin A, Zhang Y, Sun L, Yan C (2010) Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals. Nanoscale 2: 953. Yin A, Zhang Y, Sun L, Yan C (2010) Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals. Nanoscale 2: 953.
90.
go back to reference Mahalingam V, Vetrone F, Naccache R, Speghini A, Capobianco JA (2009) Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv Mater 21: 4025. Mahalingam V, Vetrone F, Naccache R, Speghini A, Capobianco JA (2009) Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv Mater 21: 4025.
91.
go back to reference Krämer KW, Biner D, Frei G, Güdel HU, Hehlen MP, Lüthi SR (2004) Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem Mater 16: 1244. Krämer KW, Biner D, Frei G, Güdel HU, Hehlen MP, Lüthi SR (2004) Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem Mater 16: 1244.
92.
go back to reference Liang L, Wu H, Hu H, Wu M, Su Q (2004) Enhanced blue and green upconversion in hydrothermally synthesized hexagonal NaY1−xYbxF4: Ln3+(Ln3+=Er3+ or Tm3+). J Alloy Compd 368: 94. Liang L, Wu H, Hu H, Wu M, Su Q (2004) Enhanced blue and green upconversion in hydrothermally synthesized hexagonal NaY1−xYbxF4: Ln3+(Ln3+=Er3+ or Tm3+). J Alloy Compd 368: 94.
93.
go back to reference Zhou JJ, Chen GX, Zhu YB, et al. (2015) Intense multiphoton upconversion of Yb3+-Tm3+ doped beta-NaYF4 individual nanocrystals by saturation excitation. J Mater Chem C 3: 364. Zhou JJ, Chen GX, Zhu YB, et al. (2015) Intense multiphoton upconversion of Yb3+-Tm3+ doped beta-NaYF4 individual nanocrystals by saturation excitation. J Mater Chem C 3: 364.
94.
go back to reference Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN (2008) High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 8: 3834. Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN (2008) High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 8: 3834.
95.
go back to reference Kolesov R, Reuter R, Xia KW, Stohr R, Zappe A, Wrachtrup J (2011) Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles. Phys Rev B 84. Kolesov R, Reuter R, Xia KW, Stohr R, Zappe A, Wrachtrup J (2011) Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles. Phys Rev B 84.
96.
go back to reference Mauser N, Piatkowski D, Mancabelli T, Nyk M, Mackowski S, Hartschuh A (2015) Tip-enhancement of up-conversion photoluminescence from rare-earth ion doped nanocrystals. ACS nano. Mauser N, Piatkowski D, Mancabelli T, Nyk M, Mackowski S, Hartschuh A (2015) Tip-enhancement of up-conversion photoluminescence from rare-earth ion doped nanocrystals. ACS nano.
97.
go back to reference Glass AM, Liao PF, Bergman JG, Olson DH (1980) Interaction of metal particles with adsorbed dye molecules: absorption and luminescence. Opt Lett 5: 368. Glass AM, Liao PF, Bergman JG, Olson DH (1980) Interaction of metal particles with adsorbed dye molecules: absorption and luminescence. Opt Lett 5: 368.
98.
go back to reference Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Analytical biochemistry 298: 1. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Analytical biochemistry 298: 1.
99.
go back to reference Dulkeith E, Morteani AC, Niedereichholz T, et al. (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89: 203002. Dulkeith E, Morteani AC, Niedereichholz T, et al. (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89: 203002.
100.
go back to reference Saboktakin M, Ye X, Oh SJ, et al. (2012) Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. ACS nano 6: 8758. Saboktakin M, Ye X, Oh SJ, et al. (2012) Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. ACS nano 6: 8758.
101.
go back to reference Zhang YH, Zhang LX, Deng RR, et al. (2014) Multicolor barcoding in a single upconversion crystal. J Am Chem Soc 136: 4893. Zhang YH, Zhang LX, Deng RR, et al. (2014) Multicolor barcoding in a single upconversion crystal. J Am Chem Soc 136: 4893.
102.
go back to reference Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301: 1884. Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301: 1884.
103.
go back to reference Agasti SS, Liong M, Peterson VM, Lee H, Weissleder R (2012) Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells. J Am Chem Soc 134: 18499. Agasti SS, Liong M, Peterson VM, Lee H, Weissleder R (2012) Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells. J Am Chem Soc 134: 18499.
104.
go back to reference Kim SH, Shim JW, Yang SM (2011) Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays. Angew Chem Int Ed 50: 1171. Kim SH, Shim JW, Yang SM (2011) Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays. Angew Chem Int Ed 50: 1171.
105.
go back to reference Pregibon DC, Toner M, Doyle PS (2007) Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315: 1393. Pregibon DC, Toner M, Doyle PS (2007) Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315: 1393.
106.
go back to reference Creran B, Yan B, Moyano DF, Gilbert MM, Vachet RW, Rotello VM (2012) Laser desorption ionization mass spectrometric imaging of mass barcoded gold nanoparticles for security applications. Chem Commun 48: 4543. Creran B, Yan B, Moyano DF, Gilbert MM, Vachet RW, Rotello VM (2012) Laser desorption ionization mass spectrometric imaging of mass barcoded gold nanoparticles for security applications. Chem Commun 48: 4543.
107.
go back to reference Dejneka MJ, Streltsov A, Pal S, et al. (2003) Rare earth-doped glass microbarcodes. Proc Natl Acad Sci USA 100: 389. Dejneka MJ, Streltsov A, Pal S, et al. (2003) Rare earth-doped glass microbarcodes. Proc Natl Acad Sci USA 100: 389.
108.
go back to reference Gorris HH, Wolfbeis OS (2013) Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew Chem Int Ed 52: 3584. Gorris HH, Wolfbeis OS (2013) Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew Chem Int Ed 52: 3584.
Metadata
Title
Upconversion Luminescence Behavior of Single Nanoparticles
Authors
Jiajia Zhou
Jianrong Qiu
Copyright Year
2016
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-1590-8_10

Premium Partners