Skip to main content
Top
Published in: Fire Technology 3/2021

28-11-2020

Upward Flame Spread Over an Array of Discrete Thermally-Thin PMMA Plates

Authors: Fu-Hai Gou, Hua-Hua Xiao, Lin Jiang, Mi Li, Man-Man Zhang, Jin-Hua Sun

Published in: Fire Technology | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Experiments and theoretical analysis were conducted to investigate the upward flame spread over a homogenous PMMA plate and an array of discrete thermally thin PMMA elements. In the experiment, a digital video camera was used to record the flame spread process. An electronic balance and thermocouples were adopted to monitor the mass loss and pyrolysis front position, respectively, as a function of time. In the theoretical analysis, the mass loss rate of PMMA was correlated to the heat transfer during flame spread. The experimental results show that the flame spread rate peaks in the case of discrete PMMA elements with a fuel coverage around 80% rather than 100% (the homogenous case) because the gap with an appropriate spacing between neighboring elements accelerates the flame spread. However, the flame cannot spread over an array of discrete fuels at a coverage of 50% or smaller where the gap is too large to allow effective heat transfer required for flame spread. A smaller coverage of PMMA results in a larger mass loss rate per area since the gaps between elements can entrain more air to promote the burning. A logarithmic relation, that can well describe the mass loss rate as a function of PMMA coverage, was proposed based on the theoretical analysis and the fitting of experimental measurements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Park J, Brucker J, Seballos R, Kwon B, Liao YTT (2018) Concurrent flame spread over discrete thin fuels. Combust Flame 191:116–125CrossRef Park J, Brucker J, Seballos R, Kwon B, Liao YTT (2018) Concurrent flame spread over discrete thin fuels. Combust Flame 191:116–125CrossRef
2.
go back to reference Vogel M, Williams FA (1970) Flame propagation along matchstick arrays. Combust Sci Technol 1:429–436CrossRef Vogel M, Williams FA (1970) Flame propagation along matchstick arrays. Combust Sci Technol 1:429–436CrossRef
3.
go back to reference Gollner MJ, Xie Y, Lee M, Nakamura Y, Rangwala AS (2012) Burning behavior of vertical matchstick arrays. Combust Sci Technol 184:585–607CrossRef Gollner MJ, Xie Y, Lee M, Nakamura Y, Rangwala AS (2012) Burning behavior of vertical matchstick arrays. Combust Sci Technol 184:585–607CrossRef
4.
go back to reference Jiang L, Zhao Z, Tang W, Miller C, Sun J-H, Gollner MJ (2018) Flame spread and burning rates through vertical arrays of wooden dowels. Proc Combust Inst 37(3):3767–3774CrossRef Jiang L, Zhao Z, Tang W, Miller C, Sun J-H, Gollner MJ (2018) Flame spread and burning rates through vertical arrays of wooden dowels. Proc Combust Inst 37(3):3767–3774CrossRef
5.
go back to reference Prahl JM, Tien JS (1973) Preliminary investigations of forced convection on flame propagation along paper and matchstick arrays. Combust Sci Technol 7:271–282CrossRef Prahl JM, Tien JS (1973) Preliminary investigations of forced convection on flame propagation along paper and matchstick arrays. Combust Sci Technol 7:271–282CrossRef
6.
go back to reference Gollner MJ, Miller CH, Tang W, Singh AV (2017) The effect of flow and geometry on concurrent flame spread. Fire Saf J 91:68–78CrossRef Gollner MJ, Miller CH, Tang W, Singh AV (2017) The effect of flow and geometry on concurrent flame spread. Fire Saf J 91:68–78CrossRef
7.
go back to reference Watanabe Y, Torikai H, Ito A (2011) Flame spread along a thin solid randomly distributed combustible and noncombustible areas. Proc Combust Inst 33:2449–2455CrossRef Watanabe Y, Torikai H, Ito A (2011) Flame spread along a thin solid randomly distributed combustible and noncombustible areas. Proc Combust Inst 33:2449–2455CrossRef
8.
go back to reference Miller CH, Gollner MJ (2015) Upward flame spread over discrete fuels. Fire Saf J 77:36–45CrossRef Miller CH, Gollner MJ (2015) Upward flame spread over discrete fuels. Fire Saf J 77:36–45CrossRef
9.
go back to reference Cui W, Liao Y-TT (2019) Experimental study of upward flame spread over discrete thin fuels. Fire Saf J 110:102907CrossRef Cui W, Liao Y-TT (2019) Experimental study of upward flame spread over discrete thin fuels. Fire Saf J 110:102907CrossRef
10.
go back to reference Korobeinichev O, Gonchikzhapov M, Tereshchenko A, Gerasimov I, Shmakov A, Paletsky A, Karpov A (2018) An experimental study of horizontal flame spread over PMMA surface in still air. Combust Flame 188:388–398CrossRef Korobeinichev O, Gonchikzhapov M, Tereshchenko A, Gerasimov I, Shmakov A, Paletsky A, Karpov A (2018) An experimental study of horizontal flame spread over PMMA surface in still air. Combust Flame 188:388–398CrossRef
11.
go back to reference Avinash G, Kumar A, Raghavan V (2016) Experimental analysis of diffusion flame spread along thin parallel solid fuel surfaces in a natural convective environment. Combust Flame 165:321–333CrossRef Avinash G, Kumar A, Raghavan V (2016) Experimental analysis of diffusion flame spread along thin parallel solid fuel surfaces in a natural convective environment. Combust Flame 165:321–333CrossRef
12.
go back to reference Jiang L, He JJ, Sun JH (2018) Sample width and thickness effects on upward flame spread over PMMA surface. J Hazard Mater 342:114–120CrossRef Jiang L, He JJ, Sun JH (2018) Sample width and thickness effects on upward flame spread over PMMA surface. J Hazard Mater 342:114–120CrossRef
13.
go back to reference Quintiere JG (2006) Fundamental of fire phenomena. Wiley, West Sussex Quintiere JG (2006) Fundamental of fire phenomena. Wiley, West Sussex
14.
go back to reference Ito A, Kashiwagi T (1988) Characterization of flame spread over PMMA using holographic interferometry sample orientation effects. Combust Flame 71:189–204CrossRef Ito A, Kashiwagi T (1988) Characterization of flame spread over PMMA using holographic interferometry sample orientation effects. Combust Flame 71:189–204CrossRef
15.
go back to reference Zhu H, Zhu G, Gao Y, Zhao G (2016) Experimental studies on the effects of spacing on upward flame spread over thin PMMA. Fire Technol 53:673–693CrossRef Zhu H, Zhu G, Gao Y, Zhao G (2016) Experimental studies on the effects of spacing on upward flame spread over thin PMMA. Fire Technol 53:673–693CrossRef
16.
go back to reference Qian C, Saito K (1997) An empirical model for upward flame spread over vertical flat and corner walls. Fire Saf Sci 5:285–296CrossRef Qian C, Saito K (1997) An empirical model for upward flame spread over vertical flat and corner walls. Fire Saf Sci 5:285–296CrossRef
17.
go back to reference Ananth R, Ndubizu CC, Tatem P (2003) Burning rate distributions for boundary layer flow combustion of a PMMA plate in forced flow. Combust Flame 135:35–55CrossRef Ananth R, Ndubizu CC, Tatem P (2003) Burning rate distributions for boundary layer flow combustion of a PMMA plate in forced flow. Combust Flame 135:35–55CrossRef
18.
go back to reference Ranga R, Korobeinichev O, Raghavan V, Tereshchenko A, Trubachev S, Shmakov A (2019) A study of the effects of ullage during the burning of horizontal PMMA and MMA surfaces. Fire Mater 43(3):241–255 Ranga R, Korobeinichev O, Raghavan V, Tereshchenko A, Trubachev S, Shmakov A (2019) A study of the effects of ullage during the burning of horizontal PMMA and MMA surfaces. Fire Mater 43(3):241–255
19.
go back to reference Rakesh Ranga HR, Korobeinichev OP, Harish A, Raghavan V, Kumar A, Gerasimov IE, Gonchikzhapov MB, Tereshchenko AG, Trubachev SA, Shmakov AG (2018) Investigation of the structure and spread rate of flames over PMMA slabs. Appl Therm Eng 130:477–491CrossRef Rakesh Ranga HR, Korobeinichev OP, Harish A, Raghavan V, Kumar A, Gerasimov IE, Gonchikzhapov MB, Tereshchenko AG, Trubachev SA, Shmakov AG (2018) Investigation of the structure and spread rate of flames over PMMA slabs. Appl Therm Eng 130:477–491CrossRef
20.
go back to reference E. Zukoski, B. Cetegen, T. Kubota (1985) Visible structure of buoyant diffusion flames. In: editor^editors Symposium (International) on Combustion: Elsevier. p. 361–366. E. Zukoski, B. Cetegen, T. Kubota (1985) Visible structure of buoyant diffusion flames. In: editor^editors Symposium (International) on Combustion: Elsevier. p. 361–366.
21.
go back to reference Rangwala AS, Buckley SG, Torero JL (2007) Upward flame spread on a vertically oriented fuel surface: the effect of finite width. Proc Combust Inst 31:2607–2615CrossRef Rangwala AS, Buckley SG, Torero JL (2007) Upward flame spread on a vertically oriented fuel surface: the effect of finite width. Proc Combust Inst 31:2607–2615CrossRef
22.
go back to reference Loh HT, Fernandez-Pello AC (1985) A study of the controlling mechanisms of flow assisted flame spread. Symposium (International) on Combustion. 20:1575–1582 Loh HT, Fernandez-Pello AC (1985) A study of the controlling mechanisms of flow assisted flame spread. Symposium (International) on Combustion. 20:1575–1582
23.
go back to reference Zhu H, Gao Y, Pan R, Zhong B (2019) Spacing effects on downward flame spread over thin PMMA slabs. Case Stud Therm Eng 13:100370CrossRef Zhu H, Gao Y, Pan R, Zhong B (2019) Spacing effects on downward flame spread over thin PMMA slabs. Case Stud Therm Eng 13:100370CrossRef
24.
go back to reference Pizzo Y, Consalvi JL, Querre P, Coutin M, Audouin L, Porterie B, Torero JL (2008) Experimental observations on the steady-state burning rate of a vertically oriented PMMA slab. Combust Flame 152:451–460CrossRefMATH Pizzo Y, Consalvi JL, Querre P, Coutin M, Audouin L, Porterie B, Torero JL (2008) Experimental observations on the steady-state burning rate of a vertically oriented PMMA slab. Combust Flame 152:451–460CrossRefMATH
25.
go back to reference Jiang L, Miller CH, Gollner MJ, Sun J-H (2017) Sample width and thickness effects on horizontal flame spread over a thin PMMA surface. Proc Combust Inst 36:2987–2994CrossRef Jiang L, Miller CH, Gollner MJ, Sun J-H (2017) Sample width and thickness effects on horizontal flame spread over a thin PMMA surface. Proc Combust Inst 36:2987–2994CrossRef
26.
go back to reference Gollner M, Huang X-Y, Cobian J, Rangwala A, Williams F (2013) Experimental study of upward flame spread of an inclined fuel surface. Proc Combust Inst 34:2531–2538CrossRef Gollner M, Huang X-Y, Cobian J, Rangwala A, Williams F (2013) Experimental study of upward flame spread of an inclined fuel surface. Proc Combust Inst 34:2531–2538CrossRef
27.
go back to reference Babrauskas V (1983) Estimating large pool fire burning rates. Fire Technol 19:251–261CrossRef Babrauskas V (1983) Estimating large pool fire burning rates. Fire Technol 19:251–261CrossRef
28.
go back to reference Bergman TL, Incropera FP, DeWitt DP, Lavine AS (2011) Fundamentals of heat and mass transfer. Wiley, New York Bergman TL, Incropera FP, DeWitt DP, Lavine AS (2011) Fundamentals of heat and mass transfer. Wiley, New York
Metadata
Title
Upward Flame Spread Over an Array of Discrete Thermally-Thin PMMA Plates
Authors
Fu-Hai Gou
Hua-Hua Xiao
Lin Jiang
Mi Li
Man-Man Zhang
Jin-Hua Sun
Publication date
28-11-2020
Publisher
Springer US
Published in
Fire Technology / Issue 3/2021
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-020-01068-9

Other articles of this Issue 3/2021

Fire Technology 3/2021 Go to the issue