Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Use of Carbon Dioxide in Polymer Synthesis

Authors : Annalisa Abdel Azim, Alessandro Cordara, Beatrice Battaglino, Angela Re

Published in: Conversion of Carbon Dioxide into Hydrocarbons Vol. 2 Technology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The possibility of developing biotechnological processes based on emitted carbon dioxide (CO2) for obtaining diverse products offers an exciting and visionary path from an ecologically destructive and resource-exhausting societal and economical model to a resource-conserving and environmentally friendly one. Microorganisms-based CO2 sequestration is best positioned to represent a prominent alternative to conventional CO2 sequestration technologies consisting of CO2 capture, CO2 separation, and CO2 storage, which present shortfalls such as energy and operational costs and the production of degradation products injurious to human health and natural ecosystems. Without neglecting the bottlenecks inherent into bio-manufacturing, it is worth highlighting that, differently from microbial CO2 sequestration, microorganisms are not restricted to be used solely as desirable carbon sinks but also as catalysts that can simultaneously capture CO2 and produce value-added chemicals. Rather than being a niche market, the CO2-based biopolymers market is expected to witness significant growth.
Herein, we highlight the usage of CO2 as carbon substrate in the synthesis of polymers or polymer building blocks through biological processes. Together with the advances reached by synthetic biology and metabolic engineering capacities, a number of microorganisms have been engaged in the construction of CO2-based cell factories. The present chapter captures the main breakthroughs in the biotransformation of CO2 into different classes of valuable intermediates towards polymer synthesis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ben-Bassat A, Breinig S, Crum GA, Huang L, Altenbaugh ALB, Rizzo N, Trotman RJ, Vannelli T, Sariaslani FS, Haynie SL (2007) Preparation of 4-Vinylphenol using pHCA decarboxylase in a two-solvent medium. Org Process Res Dev 11(2):278–285. https://doi.org/10.1021/OP0602472CrossRef Ben-Bassat A, Breinig S, Crum GA, Huang L, Altenbaugh ALB, Rizzo N, Trotman RJ, Vannelli T, Sariaslani FS, Haynie SL (2007) Preparation of 4-Vinylphenol using pHCA decarboxylase in a two-solvent medium. Org Process Res Dev 11(2):278–285. https://​doi.​org/​10.​1021/​OP0602472CrossRef
go back to reference Chee JY, Yoga SS, Lau NS, Ling SC, Abed RM, Sudesh K (2010) Bacterially produced polyhydroxyalkanoate (PHA): converting renewable resources into bioplastics. In: Current research, technology and education topics in applied microbiology and applied biotechnology. http://www.formatex.org/microbiology2/. (2014) Chee JY, Yoga SS, Lau NS, Ling SC, Abed RM, Sudesh K (2010) Bacterially produced polyhydroxyalkanoate (PHA): converting renewable resources into bioplastics. In: Current research, technology and education topics in applied microbiology and applied biotechnology. http://​www.​formatex.​org/​microbiology2/​. (2014)
go back to reference Chin JW, Anderson MA, Cui J, Spieker M (2014) Production of 1,3-propanediol in cyanobacteria (No. WO2014/062997 A1) Chin JW, Anderson MA, Cui J, Spieker M (2014) Production of 1,3-propanediol in cyanobacteria (No. WO2014/062997 A1)
go back to reference Heinrich D, Raberg M, Fricke P, Kenny ST, Morales-Gamez L, Babu RP, O’connor KE, Steinbüchel A (2016) Synthesis gas (syngas)-derived medium-chain-length Polyhydroxyalkanoate synthesis in engineered Rhodospirillum rubrum. Appl Environ Microbiol 82(20):6132–6140. https://doi.org/10.1128/AEM.01744-16CrossRef Heinrich D, Raberg M, Fricke P, Kenny ST, Morales-Gamez L, Babu RP, O’connor KE, Steinbüchel A (2016) Synthesis gas (syngas)-derived medium-chain-length Polyhydroxyalkanoate synthesis in engineered Rhodospirillum rubrum. Appl Environ Microbiol 82(20):6132–6140. https://​doi.​org/​10.​1128/​AEM.​01744-16CrossRef
go back to reference Hirokawa Y, Matsuo S, Hamada H, Matsuda F, Hanai T (2017b) Metabolic engineering of Synechococcus elongatus PCC 7942 for improvement of 1,3-propanediol and glycerol production based on in silico simulation of metabolic flux distribution. Microb Cell Factories 16:1–12. https://doi.org/10.1186/s12934-017-0824-4CrossRef Hirokawa Y, Matsuo S, Hamada H, Matsuda F, Hanai T (2017b) Metabolic engineering of Synechococcus elongatus PCC 7942 for improvement of 1,3-propanediol and glycerol production based on in silico simulation of metabolic flux distribution. Microb Cell Factories 16:1–12. https://​doi.​org/​10.​1186/​s12934-017-0824-4CrossRef
go back to reference Iatrou H, Frielinghaus H, Hanski S, Ferderigos N, Ruokolainen J, Ikkala O, Richter D, Mays J, Hadjichristidis N (2007) Architecturally induced multiresponsive vesicles from well-defined polypeptides: formation of gene vehicles. Biomacromolecules 8:2173–2181. https://doi.org/10.1021/bm070360fCrossRef Iatrou H, Frielinghaus H, Hanski S, Ferderigos N, Ruokolainen J, Ikkala O, Richter D, Mays J, Hadjichristidis N (2007) Architecturally induced multiresponsive vesicles from well-defined polypeptides: formation of gene vehicles. Biomacromolecules 8:2173–2181. https://​doi.​org/​10.​1021/​bm070360fCrossRef
go back to reference Keller MW, Schut GJ, Lipscomb GL, Menon AL, Iwuchukwu IJ, Leuko TT, Thorgersen MP, Nixon WJ, Hawkins AS, Kelly RM, Adams MWW (2013) Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc Natl Acad Sci 110:5840–5845. https://doi.org/10.1073/pnas.1222607110CrossRef Keller MW, Schut GJ, Lipscomb GL, Menon AL, Iwuchukwu IJ, Leuko TT, Thorgersen MP, Nixon WJ, Hawkins AS, Kelly RM, Adams MWW (2013) Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc Natl Acad Sci 110:5840–5845. https://​doi.​org/​10.​1073/​pnas.​1222607110CrossRef
go back to reference Liu X, He J, Niu Y, Li Y, Hu D, Xia X, Lu Y, Xu W (2015) Photo-responsive amphiphilic poly(α-hydroxy acids) with pendent o-nitrobenzyl ester constructed via copper-catalyzed azide-alkyne cycloaddition reaction. Polym Adv Technol 26:449–456. https://doi.org/10.1002/pat.3472CrossRef Liu X, He J, Niu Y, Li Y, Hu D, Xia X, Lu Y, Xu W (2015) Photo-responsive amphiphilic poly(α-hydroxy acids) with pendent o-nitrobenzyl ester constructed via copper-catalyzed azide-alkyne cycloaddition reaction. Polym Adv Technol 26:449–456. https://​doi.​org/​10.​1002/​pat.​3472CrossRef
go back to reference Mavrogiorgis D, Bilalis P, Karatzas A, Skoulas D, Fotinogiannopoulou G, Iatrou H (2014) Controlled polymerization of histidine and synthesis of well-defined stimuli responsive polymers. Elucidation of the structure-aggregation relationship of this highly multifunctional material. Polym Chem 5:6256–6278. https://doi.org/10.1039/c4py00687aCrossRef Mavrogiorgis D, Bilalis P, Karatzas A, Skoulas D, Fotinogiannopoulou G, Iatrou H (2014) Controlled polymerization of histidine and synthesis of well-defined stimuli responsive polymers. Elucidation of the structure-aggregation relationship of this highly multifunctional material. Polym Chem 5:6256–6278. https://​doi.​org/​10.​1039/​c4py00687aCrossRef
go back to reference Miyasaka H, Okuhata H, Tanaka S, Onizuka T, Akiyam H (2013) Polyhydroxyalkanoate (PHA) production from carbon dioxide by recombinant cyanobacteria. Environ Biotechnol New Appr Prospect Appl. https://doi.org/10.5772/54705 Miyasaka H, Okuhata H, Tanaka S, Onizuka T, Akiyam H (2013) Polyhydroxyalkanoate (PHA) production from carbon dioxide by recombinant cyanobacteria. Environ Biotechnol New Appr Prospect Appl. https://​doi.​org/​10.​5772/​54705
go back to reference Turk SCHJ, Kloosterman WP, Ninaber DK, Kolen KPAM, Knutova J, Suir E, Schürmann M, Raemakers-Franken PC, Müller M, De Wildeman SMA, Raamsdonk LM, Van Der Pol R, Wu L, Temudo MF, Van Der Hoeven RAM, Akeroyd M, Van Der Stoel RE, Noorman HJ, Bovenberg RAL, Trefzer AC (2016) Metabolic engineering toward sustainable production of Nylon-6. ACS Synth Biol 5:65–73. https://doi.org/10.1021/acssynbio.5b00129CrossRef Turk SCHJ, Kloosterman WP, Ninaber DK, Kolen KPAM, Knutova J, Suir E, Schürmann M, Raemakers-Franken PC, Müller M, De Wildeman SMA, Raamsdonk LM, Van Der Pol R, Wu L, Temudo MF, Van Der Hoeven RAM, Akeroyd M, Van Der Stoel RE, Noorman HJ, Bovenberg RAL, Trefzer AC (2016) Metabolic engineering toward sustainable production of Nylon-6. ACS Synth Biol 5:65–73. https://​doi.​org/​10.​1021/​acssynbio.​5b00129CrossRef
go back to reference Xiao J, Tan J, Jiang R, He X, Xu Y, Ling Y, Luan S, Tang H (2017) A pH and redox dual responsive homopolypeptide: synthesis, characterization, and application in “smart” single-walled carbon nanotube dispersion. Polym Chem 8:7025–7032. https://doi.org/10.1039/c7py01393kCrossRef Xiao J, Tan J, Jiang R, He X, Xu Y, Ling Y, Luan S, Tang H (2017) A pH and redox dual responsive homopolypeptide: synthesis, characterization, and application in “smart” single-walled carbon nanotube dispersion. Polym Chem 8:7025–7032. https://​doi.​org/​10.​1039/​c7py01393kCrossRef
Metadata
Title
Use of Carbon Dioxide in Polymer Synthesis
Authors
Annalisa Abdel Azim
Alessandro Cordara
Beatrice Battaglino
Angela Re
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-28638-5_1