Skip to main content
Top

2022 | OriginalPaper | Chapter

7. Utilization of Agro Waste for the Fabrication of Bio Composites and Bio plastics—Towards a Sustainable Green Circular Economy

Authors : S. N. Kumar, Roopal Jain, K. Anand, H. Ajay Kumar

Published in: Sustainability for 3D Printing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter proposes the utilization of agro-waste for the fabrication of bio composite and bio plastics. Agro waste is an efficient source for the fabrication of composite material. In the industrial, medical and agricultural sector, the natural fibres based reinforcement is gaining prominence. The natural fibres are classified based on the origin and can be categorized into plant, mineral and animal. The natural fibres have noteworthy gains over synthetic fibres. The composites and plastics based on naturally available resources are gaining importance due to the renewable and eco-friendly nature with the environment. India is blessed with a wide variety of plants and trees and the waste generated from nature when utilized properly paves a way towards sustainable development. This chapter focuses on the characteristics of some of the typical bio composites and bio plastics. The characteristics of bio composites and bio plastics depend on the treatment and process involved in the conversion of agro-waste. The applications of bio plastics and bio composites in various sectors are also highlighted in this work. The agro waste is one of the sources for the fabrication of bio composites and bio plastics and efficient utilization of agro-waste also generates rural empowerment towards a sustainable green circular economy. The agro waste based bio composites and bio plastics have significant environmental and economic benefits.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang, C., Quirino, R.L., Sun, J.: Biobased polymers and composites. Int. J. Polym. Sci. (2018) Zhang, C., Quirino, R.L., Sun, J.: Biobased polymers and composites. Int. J. Polym. Sci. (2018)
2.
go back to reference Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K., Mohanty, A.K.: Biobased plastics and bionanocomposites: current status and future opportunities. Prog. Polym. Sci. 38(10–11), 1653–1689 (2013)CrossRef Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K., Mohanty, A.K.: Biobased plastics and bionanocomposites: current status and future opportunities. Prog. Polym. Sci. 38(10–11), 1653–1689 (2013)CrossRef
3.
go back to reference Mwaikambo, L.: Review of the history, properties and application of plant fibres. Afr. J. Sci. Technol. 7(2), 121 (2006) Mwaikambo, L.: Review of the history, properties and application of plant fibres. Afr. J. Sci. Technol. 7(2), 121 (2006)
4.
go back to reference Gurunathan, T., Mohanty, S., Nayak, S.K.: A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. A Appl. Sci. Manuf. 1(77), 1–25 (2015)CrossRef Gurunathan, T., Mohanty, S., Nayak, S.K.: A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. A Appl. Sci. Manuf. 1(77), 1–25 (2015)CrossRef
5.
go back to reference Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M.: A review on the tensile properties of natural fiber reinforced polymer composites. Compos. B Eng. 42(4), 856–873 (2011)CrossRef Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M.: A review on the tensile properties of natural fiber reinforced polymer composites. Compos. B Eng. 42(4), 856–873 (2011)CrossRef
6.
go back to reference Tong, F.S., Chin, S.C., Doh, S.I., Gimbun, J.: Natural fiber composites as potential external strengthening material—a review. Indian J. Sci. Technol. 10(2), 1–5 (2017)CrossRef Tong, F.S., Chin, S.C., Doh, S.I., Gimbun, J.: Natural fiber composites as potential external strengthening material—a review. Indian J. Sci. Technol. 10(2), 1–5 (2017)CrossRef
7.
go back to reference Alaneme, K.K., Akintunde, I.B., Olubambi, P.A., Adewale, T.M.: Fabrication characteristics and mechanical behaviour of rice husk ash—alumina reinforced Al–Mg–Si alloy matrix hybrid composites. J. Mater. Res. Technol. 2(1), 60–7 (2013) Alaneme, K.K., Akintunde, I.B., Olubambi, P.A., Adewale, T.M.: Fabrication characteristics and mechanical behaviour of rice husk ash—alumina reinforced Al–Mg–Si alloy matrix hybrid composites. J. Mater. Res. Technol. 2(1), 60–7 (2013)
8.
go back to reference Rizal, S., Fizree, H.M., Hossain, M.S., Gopakumar, D.A., Ni, E.C., Khalil, H.A.: The role of silica-containing agro-industrial waste as reinforcement on physicochemical and thermal properties of polymer composites. Heliyon. 6(3), e03550 (2020) Rizal, S., Fizree, H.M., Hossain, M.S., Gopakumar, D.A., Ni, E.C., Khalil, H.A.: The role of silica-containing agro-industrial waste as reinforcement on physicochemical and thermal properties of polymer composites. Heliyon. 6(3), e03550 (2020)
9.
go back to reference Guna, V., Ilangovan, M., Rather, M.H., Giridharan, B.V., Prajwal, B., Krishna, K.V., Venkatesh, K., Reddy, N.: Groundnut shell/rice husk agro-waste reinforced polypropylene hybrid biocomposites. J. Build. Eng. 27, 100991 (2020) Guna, V., Ilangovan, M., Rather, M.H., Giridharan, B.V., Prajwal, B., Krishna, K.V., Venkatesh, K., Reddy, N.: Groundnut shell/rice husk agro-waste reinforced polypropylene hybrid biocomposites. J. Build. Eng. 27, 100991 (2020)
10.
go back to reference Balaji, N.S., Chockalingam, S., Ashokraj, S., Simson, D., Jayabal, S.: Study of mechanical and thermal behaviours of zea-coir hybrid polyester composites. Mater. Today: Proc. 1(27), 2048–2051 (2020) Balaji, N.S., Chockalingam, S., Ashokraj, S., Simson, D., Jayabal, S.: Study of mechanical and thermal behaviours of zea-coir hybrid polyester composites. Mater. Today: Proc. 1(27), 2048–2051 (2020)
11.
go back to reference Yusriah, L., Sapuan, S.M., Zainudin, E.S., Mariatti, M.: Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. J. Clean. Prod. 1(72), 174–180 (2014)CrossRef Yusriah, L., Sapuan, S.M., Zainudin, E.S., Mariatti, M.: Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. J. Clean. Prod. 1(72), 174–180 (2014)CrossRef
12.
go back to reference Yusoff, R.B., Takagi, H., Nakagaito, A.N.: Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind. Crops Prod. 30(94), 562–573 (2016)CrossRef Yusoff, R.B., Takagi, H., Nakagaito, A.N.: Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind. Crops Prod. 30(94), 562–573 (2016)CrossRef
13.
go back to reference Prasad, G.E., Gowda, B.K., Velmurugan, R.: A study on impact strength characteristics of coir polyester composites. Procedia Eng. 1(173), 771–777 (2017)CrossRef Prasad, G.E., Gowda, B.K., Velmurugan, R.: A study on impact strength characteristics of coir polyester composites. Procedia Eng. 1(173), 771–777 (2017)CrossRef
14.
go back to reference Shanmugarajah, B., Chew, I.M., Mubarak, N.M., Choong, T.S., Yoo, C., Tan, K.: Valorization of palm oil agro-waste into cellulose biosorbents for highly effective textile effluent remediation. J. Clean. Prod. 10(210), 697–709 (2019)CrossRef Shanmugarajah, B., Chew, I.M., Mubarak, N.M., Choong, T.S., Yoo, C., Tan, K.: Valorization of palm oil agro-waste into cellulose biosorbents for highly effective textile effluent remediation. J. Clean. Prod. 10(210), 697–709 (2019)CrossRef
15.
go back to reference Okamoto, M., John, B.: Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog. Polym. Sci. 38(10–11), 1487–1503 (2013)CrossRef Okamoto, M., John, B.: Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog. Polym. Sci. 38(10–11), 1487–1503 (2013)CrossRef
16.
go back to reference Mellinas, C., Ramos, M., Jiménez, A., Garrigós, M.C.: Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials (Basel) 13 (3) (2020) Mellinas, C., Ramos, M., Jiménez, A., Garrigós, M.C.: Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials (Basel) 13 (3) (2020)
17.
go back to reference Ali, A., Ambreen, S., Maqbool, Q., Naz, S., Shams, M.F., Ahmad, M., Phull, A.R., Zia, M.: Zinc impregnated cellulose nanocomposites: synthesis, characterization and applications. J. Phys. Chem. Solids 98, 174–182 (2016)CrossRef Ali, A., Ambreen, S., Maqbool, Q., Naz, S., Shams, M.F., Ahmad, M., Phull, A.R., Zia, M.: Zinc impregnated cellulose nanocomposites: synthesis, characterization and applications. J. Phys. Chem. Solids 98, 174–182 (2016)CrossRef
18.
go back to reference Ilyas, R.A., Sapuan, S.M., Norrrahim, M.N.F., Yasim-Anuar, T.A.T., Kadier, A., Kalil, M.S., Atikah, M.S.N., Ibrahim, R., Asrofi, M., Abral, H., Nazrin, A., Syafiq, R., Aisyah, H.A., Asyraf, M.R.M.: Nanocellulose/Starch Biopolymer Nanocomposites: Processing, Manufacturing, and Applications. Elsevier Inc. (2020) Ilyas, R.A., Sapuan, S.M., Norrrahim, M.N.F., Yasim-Anuar, T.A.T., Kadier, A., Kalil, M.S., Atikah, M.S.N., Ibrahim, R., Asrofi, M., Abral, H., Nazrin, A., Syafiq, R., Aisyah, H.A., Asyraf, M.R.M.: Nanocellulose/Starch Biopolymer Nanocomposites: Processing, Manufacturing, and Applications. Elsevier Inc. (2020)
19.
go back to reference Surya, K., Ramesan, M.T.: No title. Polym. Compos. 38 (S1), E66–E73 (2016) Surya, K., Ramesan, M.T.: No title. Polym. Compos. 38 (S1), E66–E73 (2016)
20.
go back to reference Al-Mulla, E.A.J., Suhail, A.H., Aowda, S.A.: New biopolymer nanocomposites based on epoxidized soybean oil plasticized poly(lactic acid)/fatty nitrogen compounds modified clay: preparation and characterization. Ind. Crops Prod. 33(1), 23–29 (2011)CrossRef Al-Mulla, E.A.J., Suhail, A.H., Aowda, S.A.: New biopolymer nanocomposites based on epoxidized soybean oil plasticized poly(lactic acid)/fatty nitrogen compounds modified clay: preparation and characterization. Ind. Crops Prod. 33(1), 23–29 (2011)CrossRef
21.
go back to reference Fukushima, K., Tabuani, D., Abbate, C., Arena, M., Rizzarelli, P.: Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica. Eur. Polym. J. 47(2), 139–152 (2011)CrossRef Fukushima, K., Tabuani, D., Abbate, C., Arena, M., Rizzarelli, P.: Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica. Eur. Polym. J. 47(2), 139–152 (2011)CrossRef
22.
go back to reference Rigotti, D., Pegoretti, A., Miotello, A., Checchetto, R.: Interfaces in biopolymer nanocomposites: their role in the gas barrier properties and kinetics of residual solvent desorption. Appl. Surf. Sci. 507(December 2019) (2020) Rigotti, D., Pegoretti, A., Miotello, A., Checchetto, R.: Interfaces in biopolymer nanocomposites: their role in the gas barrier properties and kinetics of residual solvent desorption. Appl. Surf. Sci. 507(December 2019) (2020)
23.
go back to reference Bahmani, A., Comeau, P.A., Montesano, J., Willett, T.L.: Extrudable hydroxyapatite/plant oil-based biopolymer nanocomposites for biomedical applications: mechanical testing and modeling. Mater. Des. 174, 107790 (2019) Bahmani, A., Comeau, P.A., Montesano, J., Willett, T.L.: Extrudable hydroxyapatite/plant oil-based biopolymer nanocomposites for biomedical applications: mechanical testing and modeling. Mater. Des. 174, 107790 (2019)
24.
go back to reference Schmidt, B., Petersen, J.H., Bender Koch, C., Plackett, D., Johansen, N.R., Katiyar, V., Larsen, E.H.: Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites (2009) Schmidt, B., Petersen, J.H., Bender Koch, C., Plackett, D., Johansen, N.R., Katiyar, V., Larsen, E.H.: Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites (2009)
25.
go back to reference Bai, H., Liang, Z., Wang, D., Guo, J., Zhang, S., Ma, P., Dong, W.: Biopolymer nanocomposites with customized mechanical property and exceptionally antibacterial performance. Compos. Sci. Technol. 199, 108338 (2020) Bai, H., Liang, Z., Wang, D., Guo, J., Zhang, S., Ma, P., Dong, W.: Biopolymer nanocomposites with customized mechanical property and exceptionally antibacterial performance. Compos. Sci. Technol. 199, 108338 (2020)
26.
go back to reference Aghajan, M.H., Panahi-Sarmad, M., Alikarami, N., Shojaei, S., Saeidi, A., Khonakdar, H.A., Shahrousvan, M., Goodarzi, V.: Using solvent-free approach for preparing innovative biopolymer nanocomposites based on PGS/gelatin. Eur. Polym. J. 131(April), 109720 (2020) Aghajan, M.H., Panahi-Sarmad, M., Alikarami, N., Shojaei, S., Saeidi, A., Khonakdar, H.A., Shahrousvan, M., Goodarzi, V.: Using solvent-free approach for preparing innovative biopolymer nanocomposites based on PGS/gelatin. Eur. Polym. J. 131(April), 109720 (2020)
27.
go back to reference Refaat Alawady, A., Ali Alshahrani, A., Ali Aouak, T., Mohamed Alandis, N.: Polysulfone membranes with CNTs/Chitosan biopolymer nanocomposite as selective layer for remarkable heavy metal ions rejection capacity. Chem. Eng. J. 388(January), 124267 (2020) Refaat Alawady, A., Ali Alshahrani, A., Ali Aouak, T., Mohamed Alandis, N.: Polysulfone membranes with CNTs/Chitosan biopolymer nanocomposite as selective layer for remarkable heavy metal ions rejection capacity. Chem. Eng. J. 388(January), 124267 (2020)
28.
go back to reference Mark, J.E., Allcock, H.R., West, R.: Inorganic Polymers. Prentice Hall, Englewood, N.J. (1992) Mark, J.E., Allcock, H.R., West, R.: Inorganic Polymers. Prentice Hall, Englewood, N.J. (1992)
29.
go back to reference McNaught, D., Wilkinson, A. (eds.): Compendium of Chemical Terminology (the ‘“Gold Book”’), 2nd edn. Blackwell Scientific Publications, Oxford (1997) McNaught, D., Wilkinson, A. (eds.): Compendium of Chemical Terminology (the ‘“Gold Book”’), 2nd edn. Blackwell Scientific Publications, Oxford (1997)
33.
go back to reference Rahman, A., Miller, C.D.: Microalgae as a source of bioplastics. In: Algal Green Chemistry, pp. 121–138. Elsevier (2017) Rahman, A., Miller, C.D.: Microalgae as a source of bioplastics. In: Algal Green Chemistry, pp. 121–138. Elsevier (2017)
34.
go back to reference Getachew, A., Woldesenbet, F.: Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC. Res. Notes 9(1), 1–9 (2016)CrossRef Getachew, A., Woldesenbet, F.: Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC. Res. Notes 9(1), 1–9 (2016)CrossRef
35.
go back to reference Rajendran, N., Puppala, S., Sneha Raj, M., Ruth Angeeleena, B., Rajam, C.: Seaweeds can be a new source for bioplastics. J. Pharm. Res. 5(3), 1476–1479 (2012) Rajendran, N., Puppala, S., Sneha Raj, M., Ruth Angeeleena, B., Rajam, C.: Seaweeds can be a new source for bioplastics. J. Pharm. Res. 5(3), 1476–1479 (2012)
36.
go back to reference Vilpoux, O., Averous, L.: Starch-based plastics. Technology, use and potentialities of Latin American starchy tubers, 521–53 (2004) Vilpoux, O., Averous, L.: Starch-based plastics. Technology, use and potentialities of Latin American starchy tubers, 521–53 (2004)
37.
go back to reference Rivero, C.P., Hu, Y., Kwan, T.H., Webb, C., Theodoropoulos, C., Daoud, W., Lin, C.S.: Bioplastics from solid waste. In: Current Developments in Biotechnology and Bioengineering, pp. 1–26. Elsevier (2017) Rivero, C.P., Hu, Y., Kwan, T.H., Webb, C., Theodoropoulos, C., Daoud, W., Lin, C.S.: Bioplastics from solid waste. In: Current Developments in Biotechnology and Bioengineering, pp. 1–26. Elsevier (2017)
38.
go back to reference Harrison, I., Huttenhuis, P.J., Heesink, A.B., Enschede, P.T.: BIOCA—Biomass Streams to Produce Cellulose Acetate Harrison, I., Huttenhuis, P.J., Heesink, A.B., Enschede, P.T.: BIOCA—Biomass Streams to Produce Cellulose Acetate
39.
go back to reference Prajapati, P., Sharma, C., Rana, R.S.: Evaluation of mechanical properties of coir and glass fiber hybrid composites. Mater. Today: Proc. 5(9), 19056–19062 (2018) Prajapati, P., Sharma, C., Rana, R.S.: Evaluation of mechanical properties of coir and glass fiber hybrid composites. Mater. Today: Proc. 5(9), 19056–19062 (2018)
40.
go back to reference Shesan, O.J., Stephen, A.C., Chioma, A.G., Neerish, R., Rotimi, S.E.: Improving the mechanical properties of natural fiber composites for structural and biomedical applications. In: Renewable and Sustainable Composites. IntechOpen (2019) Shesan, O.J., Stephen, A.C., Chioma, A.G., Neerish, R., Rotimi, S.E.: Improving the mechanical properties of natural fiber composites for structural and biomedical applications. In: Renewable and Sustainable Composites. IntechOpen (2019)
41.
go back to reference Puglia, D., Sarasini, F., Santulli, C., Kenny, J.M.: Manufacturing of natural fiber/agrowaste based polymer composites. In: Green Biocomposites, pp. 125–147. Springer, Cham (2017) Puglia, D., Sarasini, F., Santulli, C., Kenny, J.M.: Manufacturing of natural fiber/agrowaste based polymer composites. In: Green Biocomposites, pp. 125–147. Springer, Cham (2017)
42.
go back to reference Parveen, S., Rana, S., Fangueiro, R.: Natural fiber composites for structural applications. Mechanics of Nano. Micro Macro Compos. Struct. 1–2 (2012) Parveen, S., Rana, S., Fangueiro, R.: Natural fiber composites for structural applications. Mechanics of Nano. Micro Macro Compos. Struct. 1–2 (2012)
43.
go back to reference Sethunarayanan, R., Chockalingam, S., Ramanathan, R.: Natural fiber reinforced concrete. Transp. Res. Rec. 1226, 57–60 (1989) Sethunarayanan, R., Chockalingam, S., Ramanathan, R.: Natural fiber reinforced concrete. Transp. Res. Rec. 1226, 57–60 (1989)
44.
go back to reference Arul, M., Sasikumar, K.S., Sambathkumar, M., Gukendran, R., Saravanan, N.: Mechanical and fracture study of hybrid natural fiber reinforced composite—coir and sugarcane leaf sheath. Mater. Today: Proc. (2020) Arul, M., Sasikumar, K.S., Sambathkumar, M., Gukendran, R., Saravanan, N.: Mechanical and fracture study of hybrid natural fiber reinforced composite—coir and sugarcane leaf sheath. Mater. Today: Proc. (2020)
45.
go back to reference Sandhu, K., Singh, J.P., Singh, S.: Some investigations on the tensile strength of additively manufactured polylactic acid components. In: Advances in Materials Processing, pp. 221–230. Springer, Singapore (2020) Sandhu, K., Singh, J.P., Singh, S.: Some investigations on the tensile strength of additively manufactured polylactic acid components. In: Advances in Materials Processing, pp. 221–230. Springer, Singapore (2020)
46.
go back to reference Sandhu, K., Singh, S., Prakash, C.: Analysis of angular shrinkage of fused filament fabricated poly-lactic-acid prints and its relationship with other process parameters. In: IOP Conference Series: Materials Science and Engineering, vol. 561, no. 1, p. 012058. IOP Publishing (2019) Sandhu, K., Singh, S., Prakash, C.: Analysis of angular shrinkage of fused filament fabricated poly-lactic-acid prints and its relationship with other process parameters. In: IOP Conference Series: Materials Science and Engineering, vol. 561, no. 1, p. 012058. IOP Publishing (2019)
47.
go back to reference Xxx Siracusa, V., Blanco, I.: Bio-Polyethylene (Bio-PE), bio-polypropylene (Bio-PP) and bio-poly (ethylene terephthalate) (Bio-PET): recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers 12(8), 1641 (2020)CrossRef Xxx Siracusa, V., Blanco, I.: Bio-Polyethylene (Bio-PE), bio-polypropylene (Bio-PP) and bio-poly (ethylene terephthalate) (Bio-PET): recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers 12(8), 1641 (2020)CrossRef
48.
go back to reference Cheng, L., Wu, W., Meng, W., Xu, S., Han, H., Yu, Y., Qu, H., Xu, J.: Application of metallic phytates to poly (vinyl chloride) as efficient biobased phosphorous flame retardants. J. Appl. Polym. Sci. 135(33), 46601 (2018)CrossRef Cheng, L., Wu, W., Meng, W., Xu, S., Han, H., Yu, Y., Qu, H., Xu, J.: Application of metallic phytates to poly (vinyl chloride) as efficient biobased phosphorous flame retardants. J. Appl. Polym. Sci. 135(33), 46601 (2018)CrossRef
49.
go back to reference Park, S.J., Lee, J.E., Lee, H.B., Park, J., Lee, N.K., Son, Y., Park, S.H.: 3D printing of bio-based polycarbonate and its potential applications in ecofriendly indoor manufacturing. Add. Manuf. 31, 100974 (2020) Park, S.J., Lee, J.E., Lee, H.B., Park, J., Lee, N.K., Son, Y., Park, S.H.: 3D printing of bio-based polycarbonate and its potential applications in ecofriendly indoor manufacturing. Add. Manuf. 31, 100974 (2020)
50.
go back to reference Kuczynski, J., Boday, D.J.: Bio-based materials for high-end electronics applications. Int. J. Sustain. Dev. World 19(6), 557–563 (2012)CrossRef Kuczynski, J., Boday, D.J.: Bio-based materials for high-end electronics applications. Int. J. Sustain. Dev. World 19(6), 557–563 (2012)CrossRef
51.
go back to reference Hojabri, L., Kong, X., Narine, S.S.: Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane. J. Polym. Sci., Part A: Polym. Chem. 48(15), 3302–3310 (2010)CrossRef Hojabri, L., Kong, X., Narine, S.S.: Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane. J. Polym. Sci., Part A: Polym. Chem. 48(15), 3302–3310 (2010)CrossRef
52.
go back to reference Glasser WG. 6.: Prospects for future applications of cellulose acetate. In: Macromolecular Symposia, vol. 208, no. 1, pp. 371–394. Weinheim: WILEY‐VCH Verlag (2004) Glasser WG. 6.: Prospects for future applications of cellulose acetate. In: Macromolecular Symposia, vol. 208, no. 1, pp. 371–394. Weinheim: WILEY‐VCH Verlag (2004)
53.
go back to reference Fischer, S., Thümmler, K., Volkert, B., Hettrich, K., Schmidt, I., Fischer, K.: Properties and applications of cellulose acetate. In: Macromolecular Symposia, vol. 262, no. 1, pp. 89–96. Weinheim: WILEY‐VCH Verlag (2008) Fischer, S., Thümmler, K., Volkert, B., Hettrich, K., Schmidt, I., Fischer, K.: Properties and applications of cellulose acetate. In: Macromolecular Symposia, vol. 262, no. 1, pp. 89–96. Weinheim: WILEY‐VCH Verlag (2008)
54.
go back to reference Jem, K.J., van der Pol, J.F., de Vos, S.: Microbial lactic acid, its polymer poly (lactic acid), and their industrial applications. In: Plastics from Bacteria, pp. 323–346. Springer, Berlin, Heidelberg (2010) Jem, K.J., van der Pol, J.F., de Vos, S.: Microbial lactic acid, its polymer poly (lactic acid), and their industrial applications. In: Plastics from Bacteria, pp. 323–346. Springer, Berlin, Heidelberg (2010)
55.
go back to reference Zinn, M., Witholt, B., Egli, T.: Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Deliv. Rev. 53(1), 5–21 (2001)CrossRef Zinn, M., Witholt, B., Egli, T.: Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Deliv. Rev. 53(1), 5–21 (2001)CrossRef
56.
go back to reference Nazrin, A., Sapuan, S.M., Zuhri, M.Y., Ilyas, R.A., Syafiq, R., Sherwani, S.F.: Nanocellulose reinforced thermoplastic starch (TPS), polylactic acid (PLA), and polybutylene succinate (PBS) for food packaging applications. Front. Chem. 8 (2020) Nazrin, A., Sapuan, S.M., Zuhri, M.Y., Ilyas, R.A., Syafiq, R., Sherwani, S.F.: Nanocellulose reinforced thermoplastic starch (TPS), polylactic acid (PLA), and polybutylene succinate (PBS) for food packaging applications. Front. Chem. 8 (2020)
57.
go back to reference Bedian, L., Villalba-Rodríguez, A.M., Hernández-Vargas, G., Parra-Saldivar, R., Iqbal, H.M.: Bio-based materials with novel characteristics for tissue engineering applications—a review. Int. J. Biol. Macromol. 1(98), 837–846 (2017)CrossRef Bedian, L., Villalba-Rodríguez, A.M., Hernández-Vargas, G., Parra-Saldivar, R., Iqbal, H.M.: Bio-based materials with novel characteristics for tissue engineering applications—a review. Int. J. Biol. Macromol. 1(98), 837–846 (2017)CrossRef
58.
go back to reference Yasarla, L.R., Ramarao, B.V.: Lignin removal from lignocellulosic hydrolyzates by flocculation with polyethylene oxide. J. Biobased Mater. Bioenergy 7(6), 684–689 (2013)CrossRef Yasarla, L.R., Ramarao, B.V.: Lignin removal from lignocellulosic hydrolyzates by flocculation with polyethylene oxide. J. Biobased Mater. Bioenergy 7(6), 684–689 (2013)CrossRef
59.
go back to reference Winnacker, M., Rieger, B.: Biobased polyamides: recent advances in basic and applied research. Macromol. Rapid Commun. 37(17), 1391–1413 (2016)CrossRef Winnacker, M., Rieger, B.: Biobased polyamides: recent advances in basic and applied research. Macromol. Rapid Commun. 37(17), 1391–1413 (2016)CrossRef
60.
go back to reference Kumar, M.N.: A review of chitin and chitosan applications. React. Funct. Polym. 46(1), 1–27 (2000)CrossRef Kumar, M.N.: A review of chitin and chitosan applications. React. Funct. Polym. 46(1), 1–27 (2000)CrossRef
61.
go back to reference Khor, E., Lim, L.Y.: Implantable applications of chitin and chitosan. Biomaterials 24(13), 2339–2349 (2003)CrossRef Khor, E., Lim, L.Y.: Implantable applications of chitin and chitosan. Biomaterials 24(13), 2339–2349 (2003)CrossRef
62.
go back to reference Carvalho, A.J.: Starch: major sources, properties and applications as thermoplastic materials. In: Monomers, polymers and composites from renewable resources, pp. 321–342. Elsevier (2008) Carvalho, A.J.: Starch: major sources, properties and applications as thermoplastic materials. In: Monomers, polymers and composites from renewable resources, pp. 321–342. Elsevier (2008)
63.
go back to reference Del Nobile, M.A., Fava, P., Piergiovanni, L.: Water transport properties of cellophane flexible films intended for food packaging applications. J. Food Eng. 53(4), 295–300 (2002)CrossRef Del Nobile, M.A., Fava, P., Piergiovanni, L.: Water transport properties of cellophane flexible films intended for food packaging applications. J. Food Eng. 53(4), 295–300 (2002)CrossRef
64.
go back to reference Ghosal, K., Latha, M.S., Thomas, S.: Poly (ester amides) (PEAs)–scaffold for tissue engineering applications. Eur. Polymer J. 1(60), 58–68 (2014)CrossRef Ghosal, K., Latha, M.S., Thomas, S.: Poly (ester amides) (PEAs)–scaffold for tissue engineering applications. Eur. Polymer J. 1(60), 58–68 (2014)CrossRef
65.
go back to reference Sun, J., Tan, H.: Alginate-based biomaterials for regenerative medicine applications. Materials 6(4), 1285–1309 (2013)CrossRef Sun, J., Tan, H.: Alginate-based biomaterials for regenerative medicine applications. Materials 6(4), 1285–1309 (2013)CrossRef
66.
go back to reference Pawar, S.N., Edgar, K.J.: Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33(11), 3279–3305 (2012)CrossRef Pawar, S.N., Edgar, K.J.: Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33(11), 3279–3305 (2012)CrossRef
67.
go back to reference Hwo, C., Brown, H., Zhang, D., Sun, C.: Inventors, Shell Oil Co, assignee. Poly (trimethylene terephthalate) based meltblown nonwovens. United States patent application US 10/000,671 (2002) Hwo, C., Brown, H., Zhang, D., Sun, C.: Inventors, Shell Oil Co, assignee. Poly (trimethylene terephthalate) based meltblown nonwovens. United States patent application US 10/000,671 (2002)
68.
go back to reference Li, M., Wang, D., Xiao, R., Sun, G., Zhao, Q., Li, H.: A novel high flux poly (trimethylene terephthalate) nanofiber membrane for microfiltration media. Sep. Purif. Technol. 15(116), 199–205 (2013)CrossRef Li, M., Wang, D., Xiao, R., Sun, G., Zhao, Q., Li, H.: A novel high flux poly (trimethylene terephthalate) nanofiber membrane for microfiltration media. Sep. Purif. Technol. 15(116), 199–205 (2013)CrossRef
69.
go back to reference Sun, X., Xu, C., Wu, G., Ye, Q., Wang, C.: Poly (lactic-co-glycolic acid): applications and future prospects for periodontal tissue regeneration. Polymers 9(6), 189 (2017)CrossRef Sun, X., Xu, C., Wu, G., Ye, Q., Wang, C.: Poly (lactic-co-glycolic acid): applications and future prospects for periodontal tissue regeneration. Polymers 9(6), 189 (2017)CrossRef
70.
go back to reference Ferreira, F.V., Cividanes, L.S., Gouveia, R.F., Lona, L.M.: An overview on properties and applications of PBAT based composites. Polym. Eng. Sci. 59(s2), E7-E15 (2019)CrossRef Ferreira, F.V., Cividanes, L.S., Gouveia, R.F., Lona, L.M.: An overview on properties and applications of PBAT based composites. Polym. Eng. Sci. 59(s2), E7-E15 (2019)CrossRef
Metadata
Title
Utilization of Agro Waste for the Fabrication of Bio Composites and Bio plastics—Towards a Sustainable Green Circular Economy
Authors
S. N. Kumar
Roopal Jain
K. Anand
H. Ajay Kumar
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-75235-4_7

Premium Partners