Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 12/2010

01-12-2010 | Original Article

Validation efforts and flexibilities of an eight-year-old human juvenile lumbar spine using a three‐dimensional finite element model

Authors: D. Davidson Jebaseelan, Chidambaram Jebaraj, Narayan Yoganandan, S. Rajasekaran

Published in: Medical & Biological Engineering & Computing | Issue 12/2010

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The objective of this study was to develop a finite element model of the lumbar spinal column of an eight-year-old human spine and compare flexibilities under pure moments, adult, and pediatric loading with different material models. The geometry was extracted from computed tomography scans. The model included the cortical and cancellous bones, growth plates, ligaments, and discs. Adult, adolescent, and pediatric material models were used. Flexion (8 Nm), extension (6 Nm), lateral bending (6 Nm), and axial rotation (4 Nm) moments representing adult loads were applied to the three material models. Pediatric loading (0.5 Nm) was applied under these loadings to the eight-year-old spine using adult and pediatric material models. Flexibilities depended on spinal level, loading mode, and material model. Outputs incorporating the pediatric material model responded with increased flexibilities compared to the adult and adolescent material models, with one exception. This was true for the adult and pediatric loading conditions. While the sagittal and coronal bending responses were not considerably different between the adult and pediatric loadings, axial rotation responses were greater under the adult loading. This model may be used to determine intrinsic responses, such as stresses and strains, for improved characterizations of the juvenile spine behavior.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Avadhani A, Shetty AP, Rajasekaran S (2009) Pediatric transverse sacral fracture with cauda equina syndrome. Spine J 10:e10–e13CrossRefPubMed Avadhani A, Shetty AP, Rajasekaran S (2009) Pediatric transverse sacral fracture with cauda equina syndrome. Spine J 10:e10–e13CrossRefPubMed
2.
go back to reference Brandner ME (1970) Normal values of the vertebral body and intervertebral disk index during growth. Am J Roentgenol Radium Ther Nucl Med 110:618–627PubMed Brandner ME (1970) Normal values of the vertebral body and intervertebral disk index during growth. Am J Roentgenol Radium Ther Nucl Med 110:618–627PubMed
3.
go back to reference Clark P, Letts M (2001) Trauma to the thoracic and lumbar spine in the adolescent. Can J Surg 44:337–345PubMed Clark P, Letts M (2001) Trauma to the thoracic and lumbar spine in the adolescent. Can J Surg 44:337–345PubMed
4.
go back to reference Clarke EC, Appleyard RC, Bilston LE (2007) Immature sheep spines are more flexible than mature spines: an in vitro biomechanical study. Spine (Phila Pa 1976) 32:2970–2979 Clarke EC, Appleyard RC, Bilston LE (2007) Immature sheep spines are more flexible than mature spines: an in vitro biomechanical study. Spine (Phila Pa 1976) 32:2970–2979
5.
go back to reference Davidson JD, Jebaraj C, Rajasekaran S (2009) Issues in finite element modeling of adult and pediatric lumbar functional spinal units. In: National Conference on Biomechanics. IIT, Roorkee, India, p 17 Davidson JD, Jebaraj C, Rajasekaran S (2009) Issues in finite element modeling of adult and pediatric lumbar functional spinal units. In: National Conference on Biomechanics. IIT, Roorkee, India, p 17
6.
go back to reference Duke K, Aubin CE, Dansereau J, Labelle H (2008) Computer simulation for the optimization of patient positioning in spinal deformity instrumentation surgery. Med Biol Eng Comput 46:33–41CrossRefPubMed Duke K, Aubin CE, Dansereau J, Labelle H (2008) Computer simulation for the optimization of patient positioning in spinal deformity instrumentation surgery. Med Biol Eng Comput 46:33–41CrossRefPubMed
7.
go back to reference Guan Y, Yoganandan N, Zhang J, Pintar FA, Cusick JF, Wolfla CE, Maiman DJ (2006) Validation of a clinical finite element model of the human lumbosacral spine. Med Biol Eng Comput 44:633–641CrossRefPubMed Guan Y, Yoganandan N, Zhang J, Pintar FA, Cusick JF, Wolfla CE, Maiman DJ (2006) Validation of a clinical finite element model of the human lumbosacral spine. Med Biol Eng Comput 44:633–641CrossRefPubMed
8.
go back to reference Hilker CE, Yoganandan N, Pintar FA (2002) Experimental determination of adult and pediatric neck scale factors. Stapp Car Crash J 46:417–429PubMed Hilker CE, Yoganandan N, Pintar FA (2002) Experimental determination of adult and pediatric neck scale factors. Stapp Car Crash J 46:417–429PubMed
9.
go back to reference Konz RJ, Goel VK, Grobler LJ, Grosland NM, Spratt KF, Scifert JL, Sairyo K (2001) The pathomechanism of spondylolytic spondylolisthesis in immature primate lumbar spines in vitro and finite element assessments. Spine (Phila Pa 1976) 26:E38–E49 Konz RJ, Goel VK, Grobler LJ, Grosland NM, Spratt KF, Scifert JL, Sairyo K (2001) The pathomechanism of spondylolytic spondylolisthesis in immature primate lumbar spines in vitro and finite element assessments. Spine (Phila Pa 1976) 26:E38–E49
10.
go back to reference Kumaresan S, Yoganandan N, Pintar FA, Voo LM, Cusick JF, Larson SJ (1997) Finite element modeling of cervical laminectomy with graded facetectomy. J Spinal Disord 10:40–46CrossRefPubMed Kumaresan S, Yoganandan N, Pintar FA, Voo LM, Cusick JF, Larson SJ (1997) Finite element modeling of cervical laminectomy with graded facetectomy. J Spinal Disord 10:40–46CrossRefPubMed
11.
go back to reference Kumaresan S, Yoganandan N, Pintar FA (1998) Finite element modeling approaches of human cervical spine facet joint capsule. J Biomech 31:371–376CrossRefPubMed Kumaresan S, Yoganandan N, Pintar FA (1998) Finite element modeling approaches of human cervical spine facet joint capsule. J Biomech 31:371–376CrossRefPubMed
12.
go back to reference Kumaresan S, Yoganandan N, Pintar FA (1999) Finite element analysis of the cervical spine: a material property sensitivity study. Clin Biomech (Bristol, Avon) 14:41–53CrossRef Kumaresan S, Yoganandan N, Pintar FA (1999) Finite element analysis of the cervical spine: a material property sensitivity study. Clin Biomech (Bristol, Avon) 14:41–53CrossRef
13.
go back to reference Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ (1999) Finite element modeling of the cervical spine: role of intervertebral disc under axial and eccentric loads. Med Eng Phys 21:689–700CrossRefPubMed Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ (1999) Finite element modeling of the cervical spine: role of intervertebral disc under axial and eccentric loads. Med Eng Phys 21:689–700CrossRefPubMed
14.
go back to reference Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ, Kuppa S (2000) Biomechanical study of pediatric human cervical spine: a finite element approach. J Biomech Eng 122:60–71CrossRefPubMed Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ, Kuppa S (2000) Biomechanical study of pediatric human cervical spine: a finite element approach. J Biomech Eng 122:60–71CrossRefPubMed
15.
go back to reference Lin H, Aubin CE, Parent S, Villemure I (2009) Mechanobiological bone growth: comparative analysis of two biomechanical modeling approaches. Med Biol Eng Comput 47:357–366CrossRefPubMed Lin H, Aubin CE, Parent S, Villemure I (2009) Mechanobiological bone growth: comparative analysis of two biomechanical modeling approaches. Med Biol Eng Comput 47:357–366CrossRefPubMed
16.
go back to reference Mahar AT, Bagheri R, Oka R, Kostial P, Akbarnia BA (2008) Biomechanical comparison of different anchors (foundations) for the pediatric dual growing rod technique. Spine J 8:933–939CrossRefPubMed Mahar AT, Bagheri R, Oka R, Kostial P, Akbarnia BA (2008) Biomechanical comparison of different anchors (foundations) for the pediatric dual growing rod technique. Spine J 8:933–939CrossRefPubMed
17.
go back to reference Natarajan RN, Andersson GB (1999) The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine (Phila Pa 1976) 24:1873–1881 Natarajan RN, Andersson GB (1999) The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine (Phila Pa 1976) 24:1873–1881
18.
go back to reference Nuckley DJ, Ching RP (2006) Developmental biomechanics of the cervical spine: tension and compression. J Biomech 39:3045–3054CrossRefPubMed Nuckley DJ, Ching RP (2006) Developmental biomechanics of the cervical spine: tension and compression. J Biomech 39:3045–3054CrossRefPubMed
19.
go back to reference Ouyang J, Zhu Q, Zhao W, Xu Y, Chen W, Zhong S (2005) Biomechanical assessment of the pediatric cervical spine under bending and tensile loading. Spine (Phila Pa 1976) 30:E716–E723 Ouyang J, Zhu Q, Zhao W, Xu Y, Chen W, Zhong S (2005) Biomechanical assessment of the pediatric cervical spine under bending and tensile loading. Spine (Phila Pa 1976) 30:E716–E723
20.
go back to reference Pintar FA, Mayer RG, Yoganandan N, Sun E (2000) Child neck strength characteristics using an animal model. Stapp Car Crash J 44:77–83PubMed Pintar FA, Mayer RG, Yoganandan N, Sun E (2000) Child neck strength characteristics using an animal model. Stapp Car Crash J 44:77–83PubMed
21.
go back to reference Quaresma C, Joao F, Fonseca M, Secca MF, Veloso A, O’Neill JG, Branco J (2010) Comparative evaluation of the tridimensional spine position measured with a new instrument (Vertebral Metrics) and an optoelectronic system of stereophotogrammetry. Med Biol Eng Comput. doi:10.1007/s 11517-010-0658-2 Quaresma C, Joao F, Fonseca M, Secca MF, Veloso A, O’Neill JG, Branco J (2010) Comparative evaluation of the tridimensional spine position measured with a new instrument (Vertebral Metrics) and an optoelectronic system of stereophotogrammetry. Med Biol Eng Comput. doi:10.​1007/​s 11517-010-0658-2
22.
go back to reference Rajasekaran S (2007) Buckling collapse of the spine in childhood spinal tuberculosis. Clin Orthop Relat Res 460:86–92PubMed Rajasekaran S (2007) Buckling collapse of the spine in childhood spinal tuberculosis. Clin Orthop Relat Res 460:86–92PubMed
23.
go back to reference Rajasekaran S, Vijay K, Shetty AP (2009) Single-stage closing-opening wedge osteotomy of spine to correct severe post-tubercular kyphotic deformities of the spine: a 3-year follow-up of 17 patients. Eur Spine J 19:583–592CrossRefPubMed Rajasekaran S, Vijay K, Shetty AP (2009) Single-stage closing-opening wedge osteotomy of spine to correct severe post-tubercular kyphotic deformities of the spine: a 3-year follow-up of 17 patients. Eur Spine J 19:583–592CrossRefPubMed
24.
go back to reference Renner SM, Natarajan RN, Patwardhan AG, Havey RM, Voronov LI, Guo BY, Andersson GB, An HS (2007) Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine. J Biomech 40:1326–1332CrossRefPubMed Renner SM, Natarajan RN, Patwardhan AG, Havey RM, Voronov LI, Guo BY, Andersson GB, An HS (2007) Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine. J Biomech 40:1326–1332CrossRefPubMed
25.
go back to reference Sairyo K, Goel VK, Grobler LJ, Ikata T, Katoh S (1998) The pathomechanism of isthmic lumbar spondylolisthesis. a biomechanical study in immature calf spines. Spine (Phila Pa 1976) 23:1442–1446 Sairyo K, Goel VK, Grobler LJ, Ikata T, Katoh S (1998) The pathomechanism of isthmic lumbar spondylolisthesis. a biomechanical study in immature calf spines. Spine (Phila Pa 1976) 23:1442–1446
26.
go back to reference Sairyo K, Goel VK, Masuda A, Vishnubhotla S, Faizan A, Biyani A, Ebraheim N, Yonekura D, Murakami R, Terai T (2006) Three-dimensional finite element analysis of the pediatric lumbar spine. Part I: pathomechanism of apophyseal bony ring fracture, and Part II: biomechanical change as the initiating factor for pediatric isthmic spondylolisthesis at the growth plate. Eur Spine J 15:923–925CrossRefPubMed Sairyo K, Goel VK, Masuda A, Vishnubhotla S, Faizan A, Biyani A, Ebraheim N, Yonekura D, Murakami R, Terai T (2006) Three-dimensional finite element analysis of the pediatric lumbar spine. Part I: pathomechanism of apophyseal bony ring fracture, and Part II: biomechanical change as the initiating factor for pediatric isthmic spondylolisthesis at the growth plate. Eur Spine J 15:923–925CrossRefPubMed
27.
go back to reference Sairyo K, Goel VK, Masuda A, Vishnubhotla S, Faizan A, Biyani A, Ebraheim N, Yonekura D, Murakami R, Terai T (2006) Three dimensional finite element analysis of the pediatric lumbar spine. Part II: biomechanical change as the initiating factor for pediatric isthmic spondylolisthesis at the growth plate. Eur Spine J 15:930–935CrossRefPubMed Sairyo K, Goel VK, Masuda A, Vishnubhotla S, Faizan A, Biyani A, Ebraheim N, Yonekura D, Murakami R, Terai T (2006) Three dimensional finite element analysis of the pediatric lumbar spine. Part II: biomechanical change as the initiating factor for pediatric isthmic spondylolisthesis at the growth plate. Eur Spine J 15:930–935CrossRefPubMed
28.
go back to reference Skogland LB, Miller JA (1980) On the importance of growth in idiopathic scoliosis. University of Oslo, Sweden Skogland LB, Miller JA (1980) On the importance of growth in idiopathic scoliosis. University of Oslo, Sweden
29.
go back to reference Suwito W, Keller TS, Basu PK, Weisberger AM, Strauss AM, Spengler DM (1992) Geometric and material property study of the human lumbar spine using the finite element method. J Spinal Disord 5:50–59CrossRefPubMed Suwito W, Keller TS, Basu PK, Weisberger AM, Strauss AM, Spengler DM (1992) Geometric and material property study of the human lumbar spine using the finite element method. J Spinal Disord 5:50–59CrossRefPubMed
30.
go back to reference Vander Have KL, Caird MS, Gross S, Farley FA, Graziano GA, Stauff M, Segal LS (2009) Burst fractures of the thoracic and lumbar spine in children and adolescents. J Pediatr Orthop 29:713–719PubMed Vander Have KL, Caird MS, Gross S, Farley FA, Graziano GA, Stauff M, Segal LS (2009) Burst fractures of the thoracic and lumbar spine in children and adolescents. J Pediatr Orthop 29:713–719PubMed
31.
go back to reference Weinstein S (1994) Pediatric spine: principles and practice. Raven Press, New York Weinstein S (1994) Pediatric spine: principles and practice. Raven Press, New York
32.
go back to reference White AA, Panjabi MM (1998) Clinical biomechanics of the spine. JB Lippincott, Philadelphia White AA, Panjabi MM (1998) Clinical biomechanics of the spine. JB Lippincott, Philadelphia
33.
go back to reference Yoganandan N, Kumaresan SC, Voo L, Pintar FA, Larson SJ (1996) Finite element modeling of the C4–C6 cervical spine unit. Med Eng Phys 18:569–574CrossRefPubMed Yoganandan N, Kumaresan SC, Voo L, Pintar FA, Larson SJ (1996) Finite element modeling of the C4–C6 cervical spine unit. Med Eng Phys 18:569–574CrossRefPubMed
34.
go back to reference Yoganandan N, Kumaresan S, Voo L, Pintar FA (1997) Finite element model of the human lower cervical spine: parametric analysis of the C4–C6 unit. J Biomech Eng 119:87–92CrossRefPubMed Yoganandan N, Kumaresan S, Voo L, Pintar FA (1997) Finite element model of the human lower cervical spine: parametric analysis of the C4–C6 unit. J Biomech Eng 119:87–92CrossRefPubMed
35.
go back to reference Yoganandan N, Pintar F et al (eds) (1998) Frontiers in head and neck trauma: clinical and biomechanical. IOS Press, Amsterdam Yoganandan N, Pintar F et al (eds) (1998) Frontiers in head and neck trauma: clinical and biomechanical. IOS Press, Amsterdam
Metadata
Title
Validation efforts and flexibilities of an eight-year-old human juvenile lumbar spine using a three‐dimensional finite element model
Authors
D. Davidson Jebaseelan
Chidambaram Jebaraj
Narayan Yoganandan
S. Rajasekaran
Publication date
01-12-2010
Publisher
Springer-Verlag
Published in
Medical & Biological Engineering & Computing / Issue 12/2010
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-010-0691-1

Other articles of this Issue 12/2010

Medical & Biological Engineering & Computing 12/2010 Go to the issue

Premium Partner