Skip to main content
Top

2023 | OriginalPaper | Chapter

VCNet: A Self-explaining Model for Realistic Counterfactual Generation

Authors : Victor Guyomard, Françoise Fessant, Thomas Guyet, Tassadit Bouadi, Alexandre Termier

Published in: Machine Learning and Knowledge Discovery in Databases

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Counterfactual explanation is a common class of methods to make local explanations of machine learning decisions. For a given instance, these methods aim to find the smallest modification of feature values that changes the predicted decision made by a machine learning model. One of the challenges of counterfactual explanation is the efficient generation of realistic counterfactuals. To address this challenge, we propose VCNet – Variational Counter Net – a model architecture that combines a predictor and a counterfactual generator that are jointly trained, for regression or classification tasks. VCNet is able to both generate predictions, and to generate counterfactual explanations without having to solve another minimisation problem. Our contribution is the generation of counterfactuals that are close to the distribution of the predicted class. This is done by learning a variational autoencoder conditionally to the output of the predictor in a join-training fashion. We present an empirical evaluation on tabular datasets and across several interpretability metrics. The results are competitive with the state-of-the-art method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
For Kingma et al. [12], what we call the “content” in this paper is denoted the “style”. It refers to the writing style of digits in MNIST-like datasets.
 
2
By Self-explainable model here we mean that the predictor is constrained by the counterfactual generator during training but the explanation is not directly used to produce model output as in [1].
 
3
Note that the quality of the generated counterfactual depends on the quality of the learned latent space.
 
Literature
1.
go back to reference Alvarez Melis, D., Jaakkola, T.: Towards robust interpretability with self-explaining neural networks. In: Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS), pp. 7786–7795 (2018) Alvarez Melis, D., Jaakkola, T.: Towards robust interpretability with self-explaining neural networks. In: Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS), pp. 7786–7795 (2018)
2.
go back to reference Barr, B., Harrington, M.R., Sharpe, S., Bruss, C.B.: Counterfactual explanations via latent space projection and interpolation. Preprint arXiv:2112.00890 (2021) Barr, B., Harrington, M.R., Sharpe, S., Bruss, C.B.: Counterfactual explanations via latent space projection and interpolation. Preprint arXiv:​2112.​00890 (2021)
4.
go back to reference Cortez, P., Silva, A.M.G.: Using data mining to predict secondary school student performance. In: Proceedings of Annual Future Business Technology Conference, pp. 5–12 (2008) Cortez, P., Silva, A.M.G.: Using data mining to predict secondary school student performance. In: Proceedings of Annual Future Business Technology Conference, pp. 5–12 (2008)
5.
go back to reference Downs, M., Chu, J.L., Yacoby, Y., Doshi-Velez, F., Pan, W.: Cruds: counterfactual recourse using disentangled subspaces. In: ICML Workshop on Human Interpretability in Machine Learning (WHI), pp. 1–23 (2020) Downs, M., Chu, J.L., Yacoby, Y., Doshi-Velez, F., Pan, W.: Cruds: counterfactual recourse using disentangled subspaces. In: ICML Workshop on Human Interpretability in Machine Learning (WHI), pp. 1–23 (2020)
6.
go back to reference Elton, D.C.: Self-explaining AI as an alternative to interpretable AI. In: Proceedings of the International Conference on Artificial General Intelligence (AGI), pp. 95–106 (2020) Elton, D.C.: Self-explaining AI as an alternative to interpretable AI. In: Proceedings of the International Conference on Artificial General Intelligence (AGI), pp. 95–106 (2020)
8.
go back to reference Guo, H., Nguyen, T., Yadav, A.: CounterNet: end-to-end training of counterfactual aware predictions. In: ICML Workshop on Algorithmic Recourse (2021) Guo, H., Nguyen, T., Yadav, A.: CounterNet: end-to-end training of counterfactual aware predictions. In: ICML Workshop on Algorithmic Recourse (2021)
9.
go back to reference John, V., Mou, L., Bahuleyan, H., Vechtomova, O.: Disentangled representation learning for non-parallel text style transfer. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), pp. 424–434 (2019) John, V., Mou, L., Bahuleyan, H., Vechtomova, O.: Disentangled representation learning for non-parallel text style transfer. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), pp. 424–434 (2019)
11.
go back to reference Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Proceedings of the International Conference on Learning Representations (ICLR) (2014) Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Proceedings of the International Conference on Learning Representations (ICLR) (2014)
12.
go back to reference Kingma, D.P., Mohamed, S., Jimenez Rezende, D., Welling, M.: Semi-supervised learning with deep generative models. In: Proceedings of International Conference on Neural Information Processing Systems (NIPS), pp. 3581–3589 (2014) Kingma, D.P., Mohamed, S., Jimenez Rezende, D., Welling, M.: Semi-supervised learning with deep generative models. In: Proceedings of International Conference on Neural Information Processing Systems (NIPS), pp. 3581–3589 (2014)
13.
go back to reference Kohavi, R., Becker, B.: UCI machine learning repository: adult data set (1996) Kohavi, R., Becker, B.: UCI machine learning repository: adult data set (1996)
14.
go back to reference Kuzilek, J., Hlosta, M., Zdrahal, Z.: Open university learning analytics dataset. Sci. Data 4, 170171 (2017)CrossRef Kuzilek, J., Hlosta, M., Zdrahal, Z.: Open university learning analytics dataset. Sci. Data 4, 170171 (2017)CrossRef
15.
go back to reference Laugel, T., Lesot, M.J., Marsala, C., Renard, X., Detyniecki, M.: The dangers of post-hoc interpretability: unjustified counterfactual explanations. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 2801–2807 (2019) Laugel, T., Lesot, M.J., Marsala, C., Renard, X., Detyniecki, M.: The dangers of post-hoc interpretability: unjustified counterfactual explanations. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 2801–2807 (2019)
17.
go back to reference Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT), pp. 607–617 (2020) Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT), pp. 607–617 (2020)
18.
go back to reference Nangi, S.R., Chhaya, N., Khosla, S., Kaushik, N., Nyati, H.: Counterfactuals to control latent disentangled text representations for style transfer. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), pp. 40–48 (2021) Nangi, S.R., Chhaya, N., Khosla, S., Kaushik, N., Nyati, H.: Counterfactuals to control latent disentangled text representations for style transfer. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), pp. 40–48 (2021)
19.
go back to reference Nemirovsky, D., Thiebaut, N., Xu, Y., Gupta, A.: CounteRGAN: generating realistic counterfactuals with residual generative adversarial nets. preprint arXiv:2009.05199 (2020) Nemirovsky, D., Thiebaut, N., Xu, Y., Gupta, A.: CounteRGAN: generating realistic counterfactuals with residual generative adversarial nets. preprint arXiv:​2009.​05199 (2020)
20.
go back to reference de Oliveira, R.M.B., Martens, D.: A framework and benchmarking study for counterfactual generating methods on tabular data. Appl. Sci. 11(16), 7274 (2021)CrossRef de Oliveira, R.M.B., Martens, D.: A framework and benchmarking study for counterfactual generating methods on tabular data. Appl. Sci. 11(16), 7274 (2021)CrossRef
21.
go back to reference Pawelczyk, M., Broelemann, K., Kasneci, G.: Learning model-agnostic counterfactual explanations for tabular data. In: Proceedings of the Web Conference (WWW’20), pp. 3126–3132 (2020) Pawelczyk, M., Broelemann, K., Kasneci, G.: Learning model-agnostic counterfactual explanations for tabular data. In: Proceedings of the Web Conference (WWW’20), pp. 3126–3132 (2020)
22.
go back to reference Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019)CrossRef Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019)CrossRef
23.
go back to reference Russell, C.: Efficient search for diverse coherent explanations. In: Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT). Association for Computing Machinery, New York (2019) Russell, C.: Efficient search for diverse coherent explanations. In: Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT). Association for Computing Machinery, New York (2019)
24.
go back to reference Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS), pp. 3483–3491 (2015) Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS), pp. 3483–3491 (2015)
25.
go back to reference Ustun, B., Spangher, A., Liu, Y.: Actionable recourse in linear classification. In: Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT), pp. 10–19 (2019) Ustun, B., Spangher, A., Liu, Y.: Actionable recourse in linear classification. In: Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT), pp. 10–19 (2019)
26.
go back to reference Van Looveren, A., Klaise, J.: Interpretable counterfactual explanations guided by prototypes. In: Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD), pp. 650–665 (2021) Van Looveren, A., Klaise, J.: Interpretable counterfactual explanations guided by prototypes. In: Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD), pp. 650–665 (2021)
27.
go back to reference Wachter, S., Mittelstadt, B.D., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. J. Law Technol. 31(2), 841–887 (2018) Wachter, S., Mittelstadt, B.D., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. J. Law Technol. 31(2), 841–887 (2018)
Metadata
Title
VCNet: A Self-explaining Model for Realistic Counterfactual Generation
Authors
Victor Guyomard
Françoise Fessant
Thomas Guyet
Tassadit Bouadi
Alexandre Termier
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-26387-3_27

Premium Partner