Skip to main content
Top

2023 | OriginalPaper | Chapter

Virtual Design Laboratory for Sustainable Fiber Reinforced Concrete Structures: From Discrete Fibers to Structural Optimization Under Uncertainty

Authors : Gerrit E. Neu, Vladislav Gudžulic, Günther Meschke

Published in: Numerical Modeling Strategies for Sustainable Concrete Structures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Concrete is one of the most used materials worldwide with a high environmental impact. Over past years, numerous attempts to minimize the associated effects on the environment by using more sustainable materials or by improving the performance of the material (e.g. high strength concrete, fiber reinforcement) have been introduced. The increase in material performance must be accompanied by better models and design approaches to take full advantage of the potential benefits. In this contribution, a discrete fiber and a multi-level model for the analysis of SFRC structures are used to assess the influence of a chosen fiber type, content, and orientation on the structural response. Zero-thickness cohesive interface elements capture the post-cracking behavior. The discrete fibers are modeled using truss elements. The bond between fibers and concrete is modeled using an elastoplastic bond-slip law, and the effects of fiber bending, friction, and matrix spalling are accounted for using a sub-model at the level of the interface element. The predictive capabilities of both models are validated and compared with fiber pull-out experiments. Finally, the prospects of applying complex FE models in conjunction with methods of optimization to design an SFRC tunnel lining segment are discussed. The objective is to minimize the total segment thickness and the fiber content while a constraint ensures that the required failure probability is retained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Monteiro, P.J., Miller, S.A., Horvath, A.: Towards sustainable concrete. Nat. Mater. 16(7), 698–699 (2017)CrossRef Monteiro, P.J., Miller, S.A., Horvath, A.: Towards sustainable concrete. Nat. Mater. 16(7), 698–699 (2017)CrossRef
2.
go back to reference Katz, A.: Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cem. Concr. Res. 33(5), 703–711 (2003)CrossRef Katz, A.: Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cem. Concr. Res. 33(5), 703–711 (2003)CrossRef
3.
go back to reference Nedeljković, M., Visser, J., Šavija, B., Valcke, S., Schlangen, E.: Use of fine recycled concrete aggregates in concrete: a critical review. J. Build. Eng. 38, 102196 (2021)CrossRef Nedeljković, M., Visser, J., Šavija, B., Valcke, S., Schlangen, E.: Use of fine recycled concrete aggregates in concrete: a critical review. J. Build. Eng. 38, 102196 (2021)CrossRef
4.
go back to reference Walraven, J.C.: High performance fiber reinforced concrete: progress in knowledge and design codes. Mater. Struct. 42(9), 1247–1260 (2009)MathSciNetCrossRef Walraven, J.C.: High performance fiber reinforced concrete: progress in knowledge and design codes. Mater. Struct. 42(9), 1247–1260 (2009)MathSciNetCrossRef
5.
go back to reference International federation for structural concrete (fib): fib Model Code for Concrete Structures 2010. Ernst & Sohn (2013) International federation for structural concrete (fib): fib Model Code for Concrete Structures 2010. Ernst & Sohn (2013)
6.
go back to reference Lawler, J.S., Zampini, D., Shah, S.P.: Microfiber and macrofiber hybrid fiber-reinforced concrete. J. Mater. Civ. Eng. 17(5), 595–604 (2005)CrossRef Lawler, J.S., Zampini, D., Shah, S.P.: Microfiber and macrofiber hybrid fiber-reinforced concrete. J. Mater. Civ. Eng. 17(5), 595–604 (2005)CrossRef
7.
go back to reference Di Prisco, M., Plizzari, G., Vandewalle, L.: Fibre reinforced concrete: new design perspectives. Mater. Struct. 42(9), 1261–1281 (2009)CrossRef Di Prisco, M., Plizzari, G., Vandewalle, L.: Fibre reinforced concrete: new design perspectives. Mater. Struct. 42(9), 1261–1281 (2009)CrossRef
8.
go back to reference Okamura, H., Ouchi, M.: Self-compacting concrete. Development, present use and future. In: Self-Compacting Concrete: Proceedings of the 1st International RILEM Symposium, pp. 3–14. Rilem Publications, Cachan Cedex, France (1999) Okamura, H., Ouchi, M.: Self-compacting concrete. Development, present use and future. In: Self-Compacting Concrete: Proceedings of the 1st International RILEM Symposium, pp. 3–14. Rilem Publications, Cachan Cedex, France (1999)
9.
go back to reference Grünewald, S., Walraven, J.C.: Parameter-study on the influence of steel fibers and coarse aggregate content on the fresh properties of self-compacting concrete. Cem. Concr. Res. 31(12), 1793–1798 (2001)CrossRef Grünewald, S., Walraven, J.C.: Parameter-study on the influence of steel fibers and coarse aggregate content on the fresh properties of self-compacting concrete. Cem. Concr. Res. 31(12), 1793–1798 (2001)CrossRef
10.
go back to reference Martinie, L., Rossi, P., Roussel, N.: Rheology of fiber reinforced cementitious materials: classification and prediction. Cem. Concr. Res. 40(2), 226–234 (2010)CrossRef Martinie, L., Rossi, P., Roussel, N.: Rheology of fiber reinforced cementitious materials: classification and prediction. Cem. Concr. Res. 40(2), 226–234 (2010)CrossRef
11.
go back to reference Li, V.C., et al.: On the emergence of 3D printable engineered, strain hardening cementitious composites (ECC/SHCC). Cem. Concr. Res. 132, 106038 (2020)CrossRef Li, V.C., et al.: On the emergence of 3D printable engineered, strain hardening cementitious composites (ECC/SHCC). Cem. Concr. Res. 132, 106038 (2020)CrossRef
12.
go back to reference Yang, E.H., Wang, S., Yang, Y., Li, V.C.: Fiber-bridging constitutive law of engineered cementitious composites. J. Adv. Concr. Technol. 6(1), 181–193 (2008)CrossRef Yang, E.H., Wang, S., Yang, Y., Li, V.C.: Fiber-bridging constitutive law of engineered cementitious composites. J. Adv. Concr. Technol. 6(1), 181–193 (2008)CrossRef
13.
go back to reference Fantilli, A.P., Vallini, P.: A cohesive interface model for the pullout of inclined steel fibers in cementitious matrixes. J. Adv. Concr. Technol. 5(2), 247–258 (2007)CrossRef Fantilli, A.P., Vallini, P.: A cohesive interface model for the pullout of inclined steel fibers in cementitious matrixes. J. Adv. Concr. Technol. 5(2), 247–258 (2007)CrossRef
14.
go back to reference Laranjeira, F., Aguado, A., Molins, C.: Predicting the pullout response of inclined straight steel fibers. Mater. Struct. 43(6), 875–895 (2010)CrossRef Laranjeira, F., Aguado, A., Molins, C.: Predicting the pullout response of inclined straight steel fibers. Mater. Struct. 43(6), 875–895 (2010)CrossRef
15.
go back to reference Laranjeira, F., Molins, C., Aguado, A.: Predicting the pullout response of inclined hooked steel fibers. Cem. Concr. Res. 40(10), 1471–1487 (2010)CrossRef Laranjeira, F., Molins, C., Aguado, A.: Predicting the pullout response of inclined hooked steel fibers. Cem. Concr. Res. 40(10), 1471–1487 (2010)CrossRef
16.
go back to reference Zhan, Y., Meschke, G.: Multilevel computational model for failure analysis of steel-fiber–reinforced concrete structures. J. Eng. Mech. 142(11), 04016090 (2016)CrossRef Zhan, Y., Meschke, G.: Multilevel computational model for failure analysis of steel-fiber–reinforced concrete structures. J. Eng. Mech. 142(11), 04016090 (2016)CrossRef
17.
go back to reference Schauffert, E.A., Cusatis, G.: Lattice discrete particle model for fiber-reinforced concrete. I: theory. J. Eng. Mech. 138(7), 826–833 (2012)CrossRef Schauffert, E.A., Cusatis, G.: Lattice discrete particle model for fiber-reinforced concrete. I: theory. J. Eng. Mech. 138(7), 826–833 (2012)CrossRef
18.
go back to reference Kang, J., Kim, K., Lim, Y.M., Bolander, J.E.: Modeling of fiber-reinforced cement composites: discrete representation of fiber pullout. Int. J. Solids Struct. 51(10), 1970–1979 (2014)CrossRef Kang, J., Kim, K., Lim, Y.M., Bolander, J.E.: Modeling of fiber-reinforced cement composites: discrete representation of fiber pullout. Int. J. Solids Struct. 51(10), 1970–1979 (2014)CrossRef
19.
go back to reference Gudzulic, V., Neu, G., Gebuhr, G., Anders, S., Meschke, G.: Numerisches Mehrebenen-Modell für Stahlfaserbeton: Von der Faser- zur Strukturebene. Beton und Stahlbetonbau 115(2), 146–157 (2020)CrossRef Gudzulic, V., Neu, G., Gebuhr, G., Anders, S., Meschke, G.: Numerisches Mehrebenen-Modell für Stahlfaserbeton: Von der Faser- zur Strukturebene. Beton und Stahlbetonbau 115(2), 146–157 (2020)CrossRef
20.
go back to reference Snozzi, L., Molinari, J.F.: A cohesive element model for mixed mode loading with frictional contact capability. Int. J. Numer. Meth. Eng. 93(5), 510–526 (2013)MathSciNetCrossRef Snozzi, L., Molinari, J.F.: A cohesive element model for mixed mode loading with frictional contact capability. Int. J. Numer. Meth. Eng. 93(5), 510–526 (2013)MathSciNetCrossRef
21.
go back to reference Gudžulić, V., Meschke, G.: Multi-level approach for modelling the post-cracking response of steel fibre reinforced concrete under monotonic and cyclic loading. PAMM 21(1), e202100194 (2021)CrossRef Gudžulić, V., Meschke, G.: Multi-level approach for modelling the post-cracking response of steel fibre reinforced concrete under monotonic and cyclic loading. PAMM 21(1), e202100194 (2021)CrossRef
22.
go back to reference Zhan, Y., Meschke, G.: Analytical model for the pullout behavior of straight and hooked-end steel fibers. J. Eng. Mech. 140(12), 04014091 (2014)CrossRef Zhan, Y., Meschke, G.: Analytical model for the pullout behavior of straight and hooked-end steel fibers. J. Eng. Mech. 140(12), 04014091 (2014)CrossRef
23.
go back to reference Leung, C.K., Shapiro, N.: Optimal steel fiber strength for reinforcement of cementitious materials. J. Mater. Civ. Eng. 11(2), 116–123 (1999)CrossRef Leung, C.K., Shapiro, N.: Optimal steel fiber strength for reinforcement of cementitious materials. J. Mater. Civ. Eng. 11(2), 116–123 (1999)CrossRef
24.
go back to reference European Comittee for Standardisation, EN 1992 - Eurocode 2: Design of concrete structures (2005) European Comittee for Standardisation, EN 1992 - Eurocode 2: Design of concrete structures (2005)
25.
go back to reference International federation for structural concrete (fib): fib Model Code for Concrete Structures 1990 (1993) International federation for structural concrete (fib): fib Model Code for Concrete Structures 1990 (1993)
26.
go back to reference Naga Satish Kumar, C., Gunneswara Rao, T.D.: An empirical formula for mode-II fracture energy of concrete. KSCE J. Civ. Eng. 19(3), 689–697 (2015)CrossRef Naga Satish Kumar, C., Gunneswara Rao, T.D.: An empirical formula for mode-II fracture energy of concrete. KSCE J. Civ. Eng. 19(3), 689–697 (2015)CrossRef
27.
go back to reference Kang, T., Kim, W., Kwak, Y.-K., Hong, S.-G.: The choice of recycled concrete aggregates for flexural members. IABSE Congr. Rep. 18(21), 726–731 (2012)CrossRef Kang, T., Kim, W., Kwak, Y.-K., Hong, S.-G.: The choice of recycled concrete aggregates for flexural members. IABSE Congr. Rep. 18(21), 726–731 (2012)CrossRef
28.
go back to reference Neu, G.E., Edler, P., Freitag, S., Gudžulić, V., Meschke, G.: Reliability based optimization of steel-fibre segmental tunnel linings subjected to thrust jack loadings. Eng. Struct. 254, 113752 (2022)CrossRef Neu, G.E., Edler, P., Freitag, S., Gudžulić, V., Meschke, G.: Reliability based optimization of steel-fibre segmental tunnel linings subjected to thrust jack loadings. Eng. Struct. 254, 113752 (2022)CrossRef
29.
go back to reference Hemmy, O.: Splitting of SFRC induced by local forces - investigations of tunnel segments without curvature. Sub-report (Annex 3) of the report of subtask 4.4. brite euram. Institut fuer Baustoffem Massivbau und Brandschutz, TU Braunschweig (2001) Hemmy, O.: Splitting of SFRC induced by local forces - investigations of tunnel segments without curvature. Sub-report (Annex 3) of the report of subtask 4.4. brite euram. Institut fuer Baustoffem Massivbau und Brandschutz, TU Braunschweig (2001)
Metadata
Title
Virtual Design Laboratory for Sustainable Fiber Reinforced Concrete Structures: From Discrete Fibers to Structural Optimization Under Uncertainty
Authors
Gerrit E. Neu
Vladislav Gudžulic
Günther Meschke
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-07746-3_27