Skip to main content
Top

2016 | OriginalPaper | Chapter

24. Visible-Light-Responsive Photocatalysts and Photoelectrodes Using WO3 Semiconductors for Degradation of Organics and Water Splitting

Author : Kazuhiro Sayama

Published in: Nanostructured Photocatalysts

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Visible-light-responsive photocatalysts have been extensively investigated for indoor or in-vehicle applications. Conventional TiO2 photocatalysts are responsive in the UV region and hence cannot be utilized under fluorescent light through acrylic plate, LED light, or sunlight through UV-cut glass, as the intensity of UV is negligible. However, there are large total photon numbers in the visible region from these light sources, and therefore the activity of visible-light-responsive photocatalysts is high compared with that of TiO2. Tungsten oxide (WO3) is a visible-light-responsive photocatalyst, which absorbs light up to ca. 480 nm. Compared with mixed metal oxides and doped oxides, WO3 is easy to prepare, modify, and coat onto substrates. The absorption coefficient of WO3 is very high due to the direct photon transition, and the amount of absorbed photons under fluorescent and sunlight is 10 and 3 times higher than that of TiO2, respectively. WO3 also is non-toxic and is stable in acidic and oxidative conditions. Considering these advantages, WO3 semiconductors are of interest for further studies for use as photocatalysts. Here, the development of various WO3 photocatalysts for degradation of various organic compounds and for water splitting is reported. Moreover, WO3 particles have been used to fabricate porous and nanocrystalline photoelectrodes for water splitting. The charge separation of e and h occurs in the semiconductor nanoparticles; therefore, the nanocrystalline photoelectrodes are called “photocatalytic photoelectrodes.” The development of various WO3 nanocrystalline photoelectrodes with other semiconductors such as BiVO4 is also reported.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kim KG, Jeong ED, Borse PH, Jeon S, Yong K, Lee JS, Li W, Oh SH (2006) Photocatalytic Ohmic layered nanocomposite for efficient utilization of visible light photons. Appl Phys Lett 89:064101–064103CrossRef Kim KG, Jeong ED, Borse PH, Jeon S, Yong K, Lee JS, Li W, Oh SH (2006) Photocatalytic Ohmic layered nanocomposite for efficient utilization of visible light photons. Appl Phys Lett 89:064101–064103CrossRef
2.
go back to reference Vinodgopal K, Bedja I, Hotchandani S, Kamat PV (1994) A photocatalytic approach for the decolorization of textile azo dyes in colloidal semiconductor suspensions. Langmuir 10:1767–1771CrossRef Vinodgopal K, Bedja I, Hotchandani S, Kamat PV (1994) A photocatalytic approach for the decolorization of textile azo dyes in colloidal semiconductor suspensions. Langmuir 10:1767–1771CrossRef
3.
go back to reference Sclafani A, Palmisano L, Marcí G, Venezia AM (1998) Influence of platinum on catalytic activity of polycrystalline WO3 employed for phenol photodegradation in aqueous suspension. Sol Energ Mat Sol Cells 51:203–219CrossRef Sclafani A, Palmisano L, Marcí G, Venezia AM (1998) Influence of platinum on catalytic activity of polycrystalline WO3 employed for phenol photodegradation in aqueous suspension. Sol Energ Mat Sol Cells 51:203–219CrossRef
4.
go back to reference Abe R, Takami H, Murakami N, Ohtani B (2008) Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J Am Chem Soc 130:7780–7781CrossRef Abe R, Takami H, Murakami N, Ohtani B (2008) Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J Am Chem Soc 130:7780–7781CrossRef
5.
go back to reference Arai T, Horiguchi M, Yanagida M, Gunji T, Sugihara H, Sayama K (2008) Complete oxidation of acetaldehyde and toluene over a Pd/WO3 photocatalyst under fluorescentor visible-light irradiation. Chem Commun 2008:5565–5567. doi:10.1039/B811657A CrossRef Arai T, Horiguchi M, Yanagida M, Gunji T, Sugihara H, Sayama K (2008) Complete oxidation of acetaldehyde and toluene over a Pd/WO3 photocatalyst under fluorescentor visible-light irradiation. Chem Commun 2008:5565–5567. doi:10.​1039/​B811657A CrossRef
6.
go back to reference Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H, Sayama K (2007) Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation. J Phys Chem C 111:7574–7577CrossRef Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H, Sayama K (2007) Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation. J Phys Chem C 111:7574–7577CrossRef
7.
go back to reference Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H, Sayama K (2008) Promotion effect of CuO co-catalyst on WO3-catalyzed photodegradation of organic substances. Cat Commun 9:1254–1258CrossRef Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H, Sayama K (2008) Promotion effect of CuO co-catalyst on WO3-catalyzed photodegradation of organic substances. Cat Commun 9:1254–1258CrossRef
8.
go back to reference Arai T, Yanagida M, Konishi Y, Sugihara H, Sayama K (2008) Utilization of Fe3+/Fe2+ redox for the photodegradation of organic substances over WO3 photocatalyst and for H2 production from the electrolysis of water. Electrochemistry 76:128–131CrossRef Arai T, Yanagida M, Konishi Y, Sugihara H, Sayama K (2008) Utilization of Fe3+/Fe2+ redox for the photodegradation of organic substances over WO3 photocatalyst and for H2 production from the electrolysis of water. Electrochemistry 76:128–131CrossRef
9.
go back to reference Arai T, Yanagida M, Konishi Y, Ikura A, Iwasaki Y, Sugihara H, Sayama K (2008) The enhancement of WO3 catalyzed photodegradation of organic substances utilizing the redox cycle of copper ions. Appl Catal B Environ 84:42–47CrossRef Arai T, Yanagida M, Konishi Y, Ikura A, Iwasaki Y, Sugihara H, Sayama K (2008) The enhancement of WO3 catalyzed photodegradation of organic substances utilizing the redox cycle of copper ions. Appl Catal B Environ 84:42–47CrossRef
10.
go back to reference Irie H, Miura S, Kamiya K, Hashimoto K (2008) Efficient visible light-sensitive photocatalysts: grafting Cu(II) ions onto TiO2 and WO3 photocatalysts. Chem Phys Lett 457:202–205CrossRef Irie H, Miura S, Kamiya K, Hashimoto K (2008) Efficient visible light-sensitive photocatalysts: grafting Cu(II) ions onto TiO2 and WO3 photocatalysts. Chem Phys Lett 457:202–205CrossRef
11.
go back to reference Zhao Z, Miyauchi M (2008) Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts. Angewandte Chemie Int Edit 47:7051–7055CrossRef Zhao Z, Miyauchi M (2008) Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts. Angewandte Chemie Int Edit 47:7051–7055CrossRef
12.
go back to reference Sadakane M, Sasaki K, Kunioku H, Ohtani B, Ueda W, Abe R (2008) Tungsten oxide having high photocatalyst activity. Chem Commun 2008:6552–6554CrossRef Sadakane M, Sasaki K, Kunioku H, Ohtani B, Ueda W, Abe R (2008) Tungsten oxide having high photocatalyst activity. Chem Commun 2008:6552–6554CrossRef
13.
go back to reference Arai T, Horiguchi M, Yanagida M, Gunji T, Sugihara H, Sayama K (2009) Reaction mechanism and activity of WO3-catalyzed photodegradation of organic substances promoted by a CuO cocatalyst. J Phys Chem C 113:6602–6609CrossRef Arai T, Horiguchi M, Yanagida M, Gunji T, Sugihara H, Sayama K (2009) Reaction mechanism and activity of WO3-catalyzed photodegradation of organic substances promoted by a CuO cocatalyst. J Phys Chem C 113:6602–6609CrossRef
14.
go back to reference Sayama K, Hayashi H, Arai T, Yanagida M, Gunji T, Sugihara H (2010) Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds. Appl Catal B 94:150–157CrossRef Sayama K, Hayashi H, Arai T, Yanagida M, Gunji T, Sugihara H (2010) Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds. Appl Catal B 94:150–157CrossRef
15.
go back to reference Wada M, Wang N, Konishi Y, Miseki Y, Gunji T, Sayama K (2013) Angular Bi3+-WO3 with significant alkali resistance and efficient photocatalytic activity. Chem Lett 42:395–397CrossRef Wada M, Wang N, Konishi Y, Miseki Y, Gunji T, Sayama K (2013) Angular Bi3+-WO3 with significant alkali resistance and efficient photocatalytic activity. Chem Lett 42:395–397CrossRef
16.
go back to reference Sayama K, Arakawa H, Okabe K, Kusama H (1998) Jpn Patent 3198298, 2001; U.S. Patent 09/028495 Sayama K, Arakawa H, Okabe K, Kusama H (1998) Jpn Patent 3198298, 2001; U.S. Patent 09/028495
17.
go back to reference Miseki Y, Kusama H, Sugihara H, Sayama K (2010) Cs-modified WO3 photocatalyst showing efficient solar energy conversion for O2 production and Fe(III) ion reduction under visible light. J Phys Chem Lett 1:1196–1200CrossRef Miseki Y, Kusama H, Sugihara H, Sayama K (2010) Cs-modified WO3 photocatalyst showing efficient solar energy conversion for O2 production and Fe(III) ion reduction under visible light. J Phys Chem Lett 1:1196–1200CrossRef
18.
go back to reference Miseki Y, Sayama K (2014) High-efficiency water oxidation and energy storage utilizing various reversible redox mediators under visible light over surface-modified WO3. RSC Adv 4:8308–8316CrossRef Miseki Y, Sayama K (2014) High-efficiency water oxidation and energy storage utilizing various reversible redox mediators under visible light over surface-modified WO3. RSC Adv 4:8308–8316CrossRef
19.
go back to reference Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef
20.
go back to reference Santato C, Ulmann M, Augustynski J (2001) Photoelectrochemical properties of nanostructured tungsten trioxide films. J Phys Chem B 105:936–940CrossRef Santato C, Ulmann M, Augustynski J (2001) Photoelectrochemical properties of nanostructured tungsten trioxide films. J Phys Chem B 105:936–940CrossRef
21.
go back to reference Santato C, Odziemkowski M, Ulmann M, Augustynski J (2001) Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J Am Chem Soc 123:10639–10649CrossRef Santato C, Odziemkowski M, Ulmann M, Augustynski J (2001) Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J Am Chem Soc 123:10639–10649CrossRef
22.
go back to reference Saito R, Miseki Y, Sayama K (2012) Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. Chem Commun 48:3833–3835CrossRef Saito R, Miseki Y, Sayama K (2012) Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. Chem Commun 48:3833–3835CrossRef
23.
go back to reference Saito R, Miseki Y, Sayama K (2013) Photoanode characteristics of multi-layer composite BiVO4 thin film in a concentrated carbonate electrolyte solution for water splitting. J Photochem Photobio A Chem 258:58–60CrossRef Saito R, Miseki Y, Sayama K (2013) Photoanode characteristics of multi-layer composite BiVO4 thin film in a concentrated carbonate electrolyte solution for water splitting. J Photochem Photobio A Chem 258:58–60CrossRef
24.
go back to reference Fujimoto I, Wang N, Saito R, Miseki Y, Gunji T, Sayama K (2014) WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting. Int J Hydrogen Energ 39:2454–2461CrossRef Fujimoto I, Wang N, Saito R, Miseki Y, Gunji T, Sayama K (2014) WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting. Int J Hydrogen Energ 39:2454–2461CrossRef
Metadata
Title
Visible-Light-Responsive Photocatalysts and Photoelectrodes Using WO3 Semiconductors for Degradation of Organics and Water Splitting
Author
Kazuhiro Sayama
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-26079-2_24

Premium Partners