Skip to main content
Top
Published in: Machine Vision and Applications 1/2021

01-02-2021 | Original Paper

Vision-based relative pose determination of cooperative spacecraft in neutral buoyancy environment

Authors: Guohua Jia, Chaoqing Min, Kedian Wang, Zhanxia Zhu

Published in: Machine Vision and Applications | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Neutral buoyancy systems simulate the microgravity environment by taking advantage of buoyancy forces of water to offset the gravity of test bodies. Functional verification of space robots in neutral buoyancy system is of great importance for ground tests. The relative pose determination of a spacecraft plays an essential role in the on-orbit operation of space robots. In order to meet the requirement of on-orbit operation ground verification for space robots, this paper develops a vision-based system for determining the relative pose of cooperative spacecraft in neutral buoyancy environment. Cooperative markers and underwater binocular vision system are designed for the pose determination, and a cooperative spacecraft model is built. A detection and recognition method based on the topological characteristic is proposed for the cooperative marker. An underwater imaging model of binocular camera is established, and its refraction parameters are calibrated. The marker points are measured with an underwater binocular 3D measurement algorithm. Furthermore, the pose of cooperative spacecraft is determined using axisymmetric plane feature points. Additionally, the stable and reliable pose and velocity are obtained after the data are further processed with a Kalman filter. Finally, the experiments are carried out and the experimental results show that the proposed system can achieve a stable and reliable high-precision relative pose determination for cooperative spacecraft in neutral buoyancy environment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Du, X., Liang, B., Tao, Y.: Pose determination of large non-cooperative satellite in close range using coordinated cameras. In: 2009 International Conference on Mechatronics and Automation, pp. 3910–3915 Du, X., Liang, B., Tao, Y.: Pose determination of large non-cooperative satellite in close range using coordinated cameras. In: 2009 International Conference on Mechatronics and Automation, pp. 3910–3915
2.
go back to reference Zhang, X., Yuan, L., Wu, W., Tian, L., Yao, K.: Some key technics of drop tower experiment device of National Microgravity Laboratory (China) (NMLC). Sci. China Ser. E Eng. Mater. Sci. 48, 305–316 (2005) Zhang, X., Yuan, L., Wu, W., Tian, L., Yao, K.: Some key technics of drop tower experiment device of National Microgravity Laboratory (China) (NMLC). Sci. China Ser. E Eng. Mater. Sci. 48, 305–316 (2005)
3.
go back to reference Belser, V., Breuninger, J., Reilly, M., Laufer, R., Dropmann, M., Herdrich, G., et al.: Aerodynamic and engineering design of a 1.5 s high quality microgravity drop tower facility. Acta Astronaut. 129, 335–344 (2016) Belser, V., Breuninger, J., Reilly, M., Laufer, R., Dropmann, M., Herdrich, G., et al.: Aerodynamic and engineering design of a 1.5 s high quality microgravity drop tower facility. Acta Astronaut. 129, 335–344 (2016)
4.
go back to reference Nikhil, V.V., Nair, A., Niketh, P., Kumar, A., Muruganandam, T.M.: The 2.5 s microgravity drop tower at national centre for combustion research and development (NCCRD), Indian Institute of Technology Madras. Microgravity Sci. Technol. 30, 663–673 (2018) Nikhil, V.V., Nair, A., Niketh, P., Kumar, A., Muruganandam, T.M.: The 2.5 s microgravity drop tower at national centre for combustion research and development (NCCRD), Indian Institute of Technology Madras. Microgravity Sci. Technol. 30, 663–673 (2018)
5.
go back to reference Li, L., Deng, Z., Gao, H., Guo, P.: Active gravity compensation test bed for a six-DOF free-flying robot. In: 2015 IEEE International Conference on Information and Automation, pp. 3135–3140 Li, L., Deng, Z., Gao, H., Guo, P.: Active gravity compensation test bed for a six-DOF free-flying robot. In: 2015 IEEE International Conference on Information and Automation, pp. 3135–3140
6.
go back to reference Yang, M., Xu, Z., He, Y., Liu, Y., Wang, B.: Zero gravity tracking system using constant tension suspension for a multidimensional framed structure space antenna. In: 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE), pp. 614–621 Yang, M., Xu, Z., He, Y., Liu, Y., Wang, B.: Zero gravity tracking system using constant tension suspension for a multidimensional framed structure space antenna. In: 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE), pp. 614–621
7.
go back to reference Rybus, T., Seweryn, K.: Planar air-bearing microgravity simulators: review of applications, existing solutions and design parameters. Acta Astronaut. 120, 239–259 (2016) Rybus, T., Seweryn, K.: Planar air-bearing microgravity simulators: review of applications, existing solutions and design parameters. Acta Astronaut. 120, 239–259 (2016)
8.
go back to reference Mantellato, R., Lorenzini, E.C., Sternberg, D., Roascio, D., Saenz-Otero, A., Zachrau, H.J.: Simulation of a tethered microgravity robot pair and validation on a planar air bearing. Acta Astronaut. 138, 579–589 (2017) Mantellato, R., Lorenzini, E.C., Sternberg, D., Roascio, D., Saenz-Otero, A., Zachrau, H.J.: Simulation of a tethered microgravity robot pair and validation on a planar air bearing. Acta Astronaut. 138, 579–589 (2017)
9.
go back to reference Rybus, T., Seweryn, K., Oleś, J., Basmadji, F.L., Tarenko, K., Moczydłowski, R., et al.: Application of a planar air-bearing microgravity simulator for demonstration of operations required for an orbital capture with a manipulator. Acta Astronaut. 155, 211–229 (2019) Rybus, T., Seweryn, K., Oleś, J., Basmadji, F.L., Tarenko, K., Moczydłowski, R., et al.: Application of a planar air-bearing microgravity simulator for demonstration of operations required for an orbital capture with a manipulator. Acta Astronaut. 155, 211–229 (2019)
10.
go back to reference Petersen, J.C.G., Hargens, A.R., Petersen, L.G.: Parabolic flight. In: Young, L.R., Sutton, J.P. (eds.) Encyclopedia of Bioastronautics, pp. 1–8. Springer, Cham (2020) Petersen, J.C.G., Hargens, A.R., Petersen, L.G.: Parabolic flight. In: Young, L.R., Sutton, J.P. (eds.) Encyclopedia of Bioastronautics, pp. 1–8. Springer, Cham (2020)
11.
go back to reference Pletser, V.: European aircraft parabolic flights for microgravity research, applications and exploration: a review. REACH 1, 11–19 (2016) Pletser, V.: European aircraft parabolic flights for microgravity research, applications and exploration: a review. REACH 1, 11–19 (2016)
12.
go back to reference Pletser, V.: Microgravity research conducted by Prof. J.C. Legros during parabolic flights: notes on a historical perspective. Microgravity Sci. Technol. 31, 445–463 (2019) Pletser, V.: Microgravity research conducted by Prof. J.C. Legros during parabolic flights: notes on a historical perspective. Microgravity Sci. Technol. 31, 445–463 (2019)
13.
go back to reference Lockowandt, C.: Interactive operation of sounding rockets and onboard experiments. In: SpaceOps 2012 Conference, ed: American Institute of Aeronautics and Astronautics (2012) Lockowandt, C.: Interactive operation of sounding rockets and onboard experiments. In: SpaceOps 2012 Conference, ed: American Institute of Aeronautics and Astronautics (2012)
14.
go back to reference Olson*, S.L., Hegde, U., Bhattacharjee, S., Deering, J.L., Tang, L., Altenkirch, R.A.: Sounding rocket microgravity experiments elucidating diffusive and radiative transport effects on flame spread over thermally thick solids. Combust. Sci. Technol. 176, 557–584 (2004) Olson*, S.L., Hegde, U., Bhattacharjee, S., Deering, J.L., Tang, L., Altenkirch, R.A.: Sounding rocket microgravity experiments elucidating diffusive and radiative transport effects on flame spread over thermally thick solids. Combust. Sci. Technol. 176, 557–584 (2004)
15.
go back to reference Yuan, J., Zhu, Z., Ming, Z., Luo, Q.: An innovative method for simulating microgravity effects through combining electromagnetic force and buoyancy. Adv. Space Res. 56, 355–364 (2015) Yuan, J., Zhu, Z., Ming, Z., Luo, Q.: An innovative method for simulating microgravity effects through combining electromagnetic force and buoyancy. Adv. Space Res. 56, 355–364 (2015)
16.
go back to reference Jairala, J., Durkin, R., Marak, R., Prince, A., Sipila, S., Ney, Z. et al.: Extravehicular activity development and verification testing at NASA’s neutral buoyancy laboratory. In: 42nd International Conference on Environmental Systems, ed: American Institute of Aeronautics and Astronautics (2012) Jairala, J., Durkin, R., Marak, R., Prince, A., Sipila, S., Ney, Z. et al.: Extravehicular activity development and verification testing at NASA’s neutral buoyancy laboratory. In: 42nd International Conference on Environmental Systems, ed: American Institute of Aeronautics and Astronautics (2012)
17.
go back to reference Sukkarieh, S., Nebot, E.M., Durrant-Whyte, H.F.: A high integrity IMU/GPS navigation loop for autonomous land vehicle applications. IEEE Trans. Robot. Autom. 15, 572–578 (1999) Sukkarieh, S., Nebot, E.M., Durrant-Whyte, H.F.: A high integrity IMU/GPS navigation loop for autonomous land vehicle applications. IEEE Trans. Robot. Autom. 15, 572–578 (1999)
18.
go back to reference Shinozaki, R., Oguma, H., Kameda, S., Suematsu, N.: Experimental analysis of positioning accuracy of GPS/BeiDou on elevation mask. In: 2019 International Conference on Information and Communication Technology Convergence (ICTC), pp. 433–437 (2019) Shinozaki, R., Oguma, H., Kameda, S., Suematsu, N.: Experimental analysis of positioning accuracy of GPS/BeiDou on elevation mask. In: 2019 International Conference on Information and Communication Technology Convergence (ICTC), pp. 433–437 (2019)
19.
go back to reference Lukas, U.F.V.: Underwater visual computing: the grand challenge just around the corner. IEEE Comput. Graph. Appl. 36, 10–15 (2016) Lukas, U.F.V.: Underwater visual computing: the grand challenge just around the corner. IEEE Comput. Graph. Appl. 36, 10–15 (2016)
20.
go back to reference Knuth, J., Barooah, P.: Collaborative 3D localization of robots from relative pose measurements using gradient descent on manifolds. In: 2012 IEEE International Conference on Robotics and Automation, pp. 1101–1106 (2012) Knuth, J., Barooah, P.: Collaborative 3D localization of robots from relative pose measurements using gradient descent on manifolds. In: 2012 IEEE International Conference on Robotics and Automation, pp. 1101–1106 (2012)
21.
go back to reference Christian, J.A., Robinson, S.B., D’Souza, C.N., Ruiz, J.P.: Cooperative relative navigation of spacecraft using flash light detection and ranging sensors. J. Guid. Control Dyn. 37, 452–465 (2014) Christian, J.A., Robinson, S.B., D’Souza, C.N., Ruiz, J.P.: Cooperative relative navigation of spacecraft using flash light detection and ranging sensors. J. Guid. Control Dyn. 37, 452–465 (2014)
22.
go back to reference Liu, L., Zhao, G., Bo, Y.: Point cloud based relative pose estimation of a satellite in close range. Sensors 16, 824 (2016) Liu, L., Zhao, G., Bo, Y.: Point cloud based relative pose estimation of a satellite in close range. Sensors 16, 824 (2016)
23.
go back to reference Opromolla, R., Fraia, M.Z.D., Fasano, G., Rufino, G., Grassi, M.: Laboratory test of pose determination algorithms for uncooperative spacecraft. In: 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), pp. 169–174 (2017) Opromolla, R., Fraia, M.Z.D., Fasano, G., Rufino, G., Grassi, M.: Laboratory test of pose determination algorithms for uncooperative spacecraft. In: 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), pp. 169–174 (2017)
24.
go back to reference Woods, J.O., Christian, J.A.: Lidar-based relative navigation with respect to non-cooperative objects. Acta Astronaut. 126, 298–311 (2016) Woods, J.O., Christian, J.A.: Lidar-based relative navigation with respect to non-cooperative objects. Acta Astronaut. 126, 298–311 (2016)
25.
go back to reference Kim, B., Kim, J., Cho, H., Kim, J., Yu, S.: AUV-based multi-view scanning method for 3-D reconstruction of underwater object using forward scan sonar. IEEE Sens. J. 20, 1592–1606 (2020) Kim, B., Kim, J., Cho, H., Kim, J., Yu, S.: AUV-based multi-view scanning method for 3-D reconstruction of underwater object using forward scan sonar. IEEE Sens. J. 20, 1592–1606 (2020)
26.
go back to reference Neves, G., Ruiz, M., Fontinele, J., Oliveira, L.: Rotated object detection with forward-looking sonar in underwater applications. Expert Syst. Appl. 140, 112870 (2020) Neves, G., Ruiz, M., Fontinele, J., Oliveira, L.: Rotated object detection with forward-looking sonar in underwater applications. Expert Syst. Appl. 140, 112870 (2020)
27.
go back to reference Baldwin, G., Mahony, R., Trumpf, J.: A nonlinear observer for 6 DOF pose estimation from inertial and bearing measurements. In: 2009 IEEE International Conference on Robotics and Automation, pp. 2237–2242 (2009) Baldwin, G., Mahony, R., Trumpf, J.: A nonlinear observer for 6 DOF pose estimation from inertial and bearing measurements. In: 2009 IEEE International Conference on Robotics and Automation, pp. 2237–2242 (2009)
28.
go back to reference Opromolla, R., Fasano, G., Rufino, G., Grassi, M.: A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations. Progr. Aerosp. Sci. 93, 53–72 (2017) Opromolla, R., Fasano, G., Rufino, G., Grassi, M.: A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations. Progr. Aerosp. Sci. 93, 53–72 (2017)
29.
go back to reference Pan, H., Huang, J., Qin, S.: High accurate estimation of relative pose of cooperative space targets based on measurement of monocular vision imaging. Optik 125, 3127–3133 (2014) Pan, H., Huang, J., Qin, S.: High accurate estimation of relative pose of cooperative space targets based on measurement of monocular vision imaging. Optik 125, 3127–3133 (2014)
30.
go back to reference Wen, Z., Wang, Y., Luo, J., Kuijper, A., Di, N., Jin, M.: Robust, fast and accurate vision-based localization of a cooperative target used for space robotic arm. Acta Astronaut. 136, 101–114 (2017) Wen, Z., Wang, Y., Luo, J., Kuijper, A., Di, N., Jin, M.: Robust, fast and accurate vision-based localization of a cooperative target used for space robotic arm. Acta Astronaut. 136, 101–114 (2017)
31.
go back to reference Mokuno, M., Kawano, I.: In-orbit demonstration of an optical navigation system for autonomous rendezvous docking. J. Spacecr. Rockets 48, 1046–1054 (2011) Mokuno, M., Kawano, I.: In-orbit demonstration of an optical navigation system for autonomous rendezvous docking. J. Spacecr. Rockets 48, 1046–1054 (2011)
32.
go back to reference Arantes, G., Rocco, E.M., da Fonseca, I.M., Theil, S.: Far and proximity maneuvers of a constellation of service satellites and autonomous pose estimation of customer satellite using machine vision. Acta Astronaut. 66, 1493–1505 (2010) Arantes, G., Rocco, E.M., da Fonseca, I.M., Theil, S.: Far and proximity maneuvers of a constellation of service satellites and autonomous pose estimation of customer satellite using machine vision. Acta Astronaut. 66, 1493–1505 (2010)
33.
go back to reference He, Y., Liang, B., Du, X., Wang, X., Zhang, D.: Measurement of relative pose between two non-cooperative spacecrafts based on graph cut theory. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 1900–1905 (2014) He, Y., Liang, B., Du, X., Wang, X., Zhang, D.: Measurement of relative pose between two non-cooperative spacecrafts based on graph cut theory. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 1900–1905 (2014)
34.
go back to reference Zhang, L., Zhu, F., Hao, Y., Pan, W.: Optimization-based non-cooperative spacecraft pose estimation using stereo cameras during proximity operations. Appl. Opt. 56, 4522–4531 (2017) Zhang, L., Zhu, F., Hao, Y., Pan, W.: Optimization-based non-cooperative spacecraft pose estimation using stereo cameras during proximity operations. Appl. Opt. 56, 4522–4531 (2017)
35.
go back to reference Peng, J., Xu, W., Liang, B., Wu, A.: Virtual stereovision pose measurement of noncooperative space targets for a dual-arm space robot. IEEE Trans. Instrum. Meas. 69, 1–13 (2019) Peng, J., Xu, W., Liang, B., Wu, A.: Virtual stereovision pose measurement of noncooperative space targets for a dual-arm space robot. IEEE Trans. Instrum. Meas. 69, 1–13 (2019)
36.
go back to reference Cai, J., Huang, P., Zhang, B., Wang, D.: A TSR visual servoing system based on a novel dynamic template matching method. Sensors (Basel) 15, 32152–32167 (2015) Cai, J., Huang, P., Zhang, B., Wang, D.: A TSR visual servoing system based on a novel dynamic template matching method. Sensors (Basel) 15, 32152–32167 (2015)
37.
go back to reference Gasbarri, P., Sabatini, M., Palmerini, G.B.: Ground tests for vision based determination and control of formation flying spacecraft trajectories. Acta Astronaut. 102, 378–391 (2014) Gasbarri, P., Sabatini, M., Palmerini, G.B.: Ground tests for vision based determination and control of formation flying spacecraft trajectories. Acta Astronaut. 102, 378–391 (2014)
38.
go back to reference Pertile, M., Chiodini, S., Giubilato, R., Mazzucato, M., Valmorbida, A., Fornaser, A., et al.: Metrological characterization of a vision-based system for relative pose measurements with fiducial marker mapping for spacecrafts. Robotics 7, 43 (2018) Pertile, M., Chiodini, S., Giubilato, R., Mazzucato, M., Valmorbida, A., Fornaser, A., et al.: Metrological characterization of a vision-based system for relative pose measurements with fiducial marker mapping for spacecrafts. Robotics 7, 43 (2018)
39.
go back to reference Lynch, B., Ellery, A.: Efficient control of an AUV-manipulator system: an application for the exploration of europa. IEEE J. Ocean. Eng. 39, 552–570 (2014) Lynch, B., Ellery, A.: Efficient control of an AUV-manipulator system: an application for the exploration of europa. IEEE J. Ocean. Eng. 39, 552–570 (2014)
40.
go back to reference Carignan, C.R., Lane, J.C., Akin, D.L.: Control architecture and operator interface for a free-flying robotic vehicle. IEEE Trans. Syst. Man, Cybern. Part C (Appl. Rev.) 31, 327–336 (2001) Carignan, C.R., Lane, J.C., Akin, D.L.: Control architecture and operator interface for a free-flying robotic vehicle. IEEE Trans. Syst. Man, Cybern. Part C (Appl. Rev.) 31, 327–336 (2001)
41.
go back to reference McGhan, C., Besser, R., Sanner, R., Atkins, E.: Semi-autonomous inspection with a neutral buoyancy free-flyer. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, ed: American Institute of Aeronautics and Astronautics (2006) McGhan, C., Besser, R., Sanner, R., Atkins, E.: Semi-autonomous inspection with a neutral buoyancy free-flyer. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, ed: American Institute of Aeronautics and Astronautics (2006)
42.
go back to reference Zhu, Z., Zhang, G., Song, J., Tang, B., Ma, W., Yuan, J., et al.: Use of dynamic scaling for trajectory planning of floating pedestal and manipulator system in a microgravity environment. Microgravity Sci. Technol. 30, 511–523 (2018) Zhu, Z., Zhang, G., Song, J., Tang, B., Ma, W., Yuan, J., et al.: Use of dynamic scaling for trajectory planning of floating pedestal and manipulator system in a microgravity environment. Microgravity Sci. Technol. 30, 511–523 (2018)
43.
go back to reference Akin, D.L., Bowden, M.L., Spofford, J.R.: Neutral buoyancy evaluation of technologies for space station external operations. In: 35th Congress of the International Astronautical Federation, pp. 34–38 (1984) Akin, D.L., Bowden, M.L., Spofford, J.R.: Neutral buoyancy evaluation of technologies for space station external operations. In: 35th Congress of the International Astronautical Federation, pp. 34–38 (1984)
44.
go back to reference Smithanik, J.R., Atkins, E.M., Sanner, R.M.: Visual positioning system for an underwater space simulation environment. J. Guid. Control Dyn. 29, 858–869 (2006) Smithanik, J.R., Atkins, E.M., Sanner, R.M.: Visual positioning system for an underwater space simulation environment. J. Guid. Control Dyn. 29, 858–869 (2006)
45.
go back to reference Yuan, Y., Zhang, P., Wang, Z., Guo, L., Yang, H.: Active disturbance rejection control for the ranger neutral buoyancy vehicle: a delta operator approach. IEEE Trans. Industr. Electron. 64, 9410–9420 (2017) Yuan, Y., Zhang, P., Wang, Z., Guo, L., Yang, H.: Active disturbance rejection control for the ranger neutral buoyancy vehicle: a delta operator approach. IEEE Trans. Industr. Electron. 64, 9410–9420 (2017)
46.
go back to reference Oda, M., Kibe, K., Yamagata, F.: ETS-VII, space robot in-orbit experiment satellite. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 739–744, vol. 1 (1996) Oda, M., Kibe, K., Yamagata, F.: ETS-VII, space robot in-orbit experiment satellite. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 739–744, vol. 1 (1996)
47.
go back to reference Inaba, N., Oda, M.: Autonomous satellite capture by a space robot: world first on-orbit experiment on a Japanese robot satellite ETS-VII. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), pp. 1169–1174, vol. 2 (2000) Inaba, N., Oda, M.: Autonomous satellite capture by a space robot: world first on-orbit experiment on a Japanese robot satellite ETS-VII. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), pp. 1169–1174, vol. 2 (2000)
48.
go back to reference Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using mixed integer linear programming. Pattern Recognit. 51, 481–491 (2016) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using mixed integer linear programming. Pattern Recognit. 51, 481–491 (2016)
49.
go back to reference Jan, Č., Fabio, B., Dimitrios, S., Fotis, L.: Detecting square markers in underwater environments. Remote Sens. 11, 459 (2019) Jan, Č., Fabio, B., Dimitrios, S., Fotis, L.: Detecting square markers in underwater environments. Remote Sens. 11, 459 (2019)
50.
go back to reference Yang, X., Fang, S., Kong, B., Li, Y.: Design of a color coded target for vision measurements. Optik Int. J. Light Electron Opt. 125, 3727–3732 (2014) Yang, X., Fang, S., Kong, B., Li, Y.: Design of a color coded target for vision measurements. Optik Int. J. Light Electron Opt. 125, 3727–3732 (2014)
51.
go back to reference Treibitz, T., Schechner, Y., Kunz, C., Singh, H.: Flat refractive geometry. IEEE Trans. Pattern Anal. Mach. Intell. 34, 51–65 (2012) Treibitz, T., Schechner, Y., Kunz, C., Singh, H.: Flat refractive geometry. IEEE Trans. Pattern Anal. Mach. Intell. 34, 51–65 (2012)
52.
go back to reference Fasano, G., Grassi, M., Accardo, D.: A stereo-vision based system for autonomous navigation of an in-orbit servicing platform. In: AIAA Infotech@Aerospace Conference, ed: American Institute of Aeronautics and Astronautics (2009) Fasano, G., Grassi, M., Accardo, D.: A stereo-vision based system for autonomous navigation of an in-orbit servicing platform. In: AIAA Infotech@Aerospace Conference, ed: American Institute of Aeronautics and Astronautics (2009)
53.
go back to reference Segal, S., Carmi, A., Gurfil, P.: Stereovision-based estimation of relative dynamics between noncooperative satellites: theory and experiments. IEEE Trans. Control Syst. Technol. 22, 568–584 (2014) Segal, S., Carmi, A., Gurfil, P.: Stereovision-based estimation of relative dynamics between noncooperative satellites: theory and experiments. IEEE Trans. Control Syst. Technol. 22, 568–584 (2014)
54.
go back to reference Feng, Q., Zhu, Z.H., Pan, Q., Hou, X.: Relative state and inertia estimation of unknown tumbling spacecraft by stereo vision. IEEE Access 6, 54126–54138 (2018) Feng, Q., Zhu, Z.H., Pan, Q., Hou, X.: Relative state and inertia estimation of unknown tumbling spacecraft by stereo vision. IEEE Access 6, 54126–54138 (2018)
55.
go back to reference Ahn, S.J., Rauh, W., Recknagel, M.: Circular coded landmark for optical 3D-measurement and robot vision. In: 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, Proceedings IROS ‘99 (1999) Ahn, S.J., Rauh, W., Recknagel, M.: Circular coded landmark for optical 3D-measurement and robot vision. In: 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, Proceedings IROS ‘99 (1999)
56.
go back to reference Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000) Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)
57.
go back to reference Sakamoto, K., Moro, A., Fujii, H., Yamashita, A., Asama, H.: Three-dimensional measurement of objects in liquid with an unknown refractive index using fisheye stereo camera. In: 2014 IEEE/SICE International Symposium on System Integration, pp. 281–286 (2014) Sakamoto, K., Moro, A., Fujii, H., Yamashita, A., Asama, H.: Three-dimensional measurement of objects in liquid with an unknown refractive index using fisheye stereo camera. In: 2014 IEEE/SICE International Symposium on System Integration, pp. 281–286 (2014)
58.
go back to reference Digumarti, S.T., Chaurasia, G., Taneja, A., Siegwart, R., Thomas, A., Beardsley, P.: Underwater 3D capture using a low-cost commercial depth camera. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9 (2016) Digumarti, S.T., Chaurasia, G., Taneja, A., Siegwart, R., Thomas, A., Beardsley, P.: Underwater 3D capture using a low-cost commercial depth camera. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9 (2016)
59.
60.
go back to reference Taketomi, T., Okada, K., Yamamoto, G., Miyazaki, J., Kato, H.: Camera pose estimation under dynamic intrinsic parameter change for augmented reality. Comput. Graph. 44, 11–19 (2014) Taketomi, T., Okada, K., Yamamoto, G., Miyazaki, J., Kato, H.: Camera pose estimation under dynamic intrinsic parameter change for augmented reality. Comput. Graph. 44, 11–19 (2014)
61.
go back to reference Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874 (2006) Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874 (2006)
Metadata
Title
Vision-based relative pose determination of cooperative spacecraft in neutral buoyancy environment
Authors
Guohua Jia
Chaoqing Min
Kedian Wang
Zhanxia Zhu
Publication date
01-02-2021
Publisher
Springer Berlin Heidelberg
Published in
Machine Vision and Applications / Issue 1/2021
Print ISSN: 0932-8092
Electronic ISSN: 1432-1769
DOI
https://doi.org/10.1007/s00138-020-01137-7

Other articles of this Issue 1/2021

Machine Vision and Applications 1/2021 Go to the issue

Premium Partner