Skip to main content
Top

2016 | OriginalPaper | Chapter

2. Visualization and Numerical Investigation of Natural Convection Flow of CO2 in Aqueous and Oleic Systems

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Optimal storage of carbon dioxide (CO2) in aquifers requires dissolution in the aqueous phase. Nevertheless, transfer of CO2 from the gas phase to the aqueous phase would be slow if it were only driven by diffusion. Dissolution of CO2 in water forms a mixture that is denser than the original water or brine. This causes a local density increase, which induces natural convection currents accelerating the rate of CO2 dissolution. The same mechanism also applies to carbon dioxide enhanced oil recovery. This study compares numerical models with a set of high pressure visual experiments, based on the Schlieren technique, in which we observe the effect of gravity-induced fingers when sub- and super-critical CO2 at in situ pressures and temperatures is brought above the liquid, i.e., water, brine or oil. A short but comprehensive description of the Schlieren set-up and the transparent pressure cell is presented. The Schlieren set-up is capable of visualizing instabilities in natural convection flows; a drawback is that it can only be practically applied in bulk flow, i.e., in the absence of a porous medium. All the same many features that occur in a porous medium also occur in bulk, e.g., unstable gravity fingering. The experiments show that natural convection currents are weakest in highly concentrated brine and strongest in oil, due to the higher and lower density contrasts respectively. Therefore, the set-up can screen aqueous salt solutions or oil for the relative importance of natural convection flows. The Schlieren pattern consists of a dark region near the equator and a lighter region below it. The dark region indicates a region where the refractive index increases downward, either due to the presence of a gas liquid interface, or due to the thin diffusion layer, which also appears in numerical simulations. The experiments demonstrate the initiation and development of the gravity induced fingers. The experimental results are compared to numerical results. It is shown that natural convection effects are stronger in cases of high density differences. However, due to numerical limitations, the simulations are characterized by much larger fingers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Eftekhari, A. A., Van Der Kooi, H., & Bruining, H. (2012). Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy, 45(1), 729–745.CrossRef Eftekhari, A. A., Van Der Kooi, H., & Bruining, H. (2012). Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy, 45(1), 729–745.CrossRef
2.
go back to reference Van der Meer, L. (1992). Investigations regarding the storage of carbon dioxide in aquifers in the Netherlands. Energy Conversion and Management, 33(5), 611–618.CrossRef Van der Meer, L. (1992). Investigations regarding the storage of carbon dioxide in aquifers in the Netherlands. Energy Conversion and Management, 33(5), 611–618.CrossRef
3.
go back to reference Gmelin, L. (1973). Gmelin Handbuch der anorganischen Chemie, 8. Auflage. Kohlenstoff, Teil C3, Verbindungen. ISBN 3-527-81419-1. Gmelin, L. (1973). Gmelin Handbuch der anorganischen Chemie, 8. Auflage. Kohlenstoff, Teil C3, Verbindungen. ISBN 3-527-81419-1.
4.
go back to reference Bachu, S., Gunter, W., & Perkins, E. (1994). Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, 35(4), 269–279.CrossRef Bachu, S., Gunter, W., & Perkins, E. (1994). Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, 35(4), 269–279.CrossRef
5.
go back to reference Class, H., et al. (2009). A benchmark study on problems related to CO2 storage in geologic formations. Computational Geosciences, 13(4), 409–434.CrossRefMATH Class, H., et al. (2009). A benchmark study on problems related to CO2 storage in geologic formations. Computational Geosciences, 13(4), 409–434.CrossRefMATH
6.
go back to reference Elder, J. (1968). The unstable thermal interface. Journal of Fluid Mechanics, 32(1), 69–96.CrossRef Elder, J. (1968). The unstable thermal interface. Journal of Fluid Mechanics, 32(1), 69–96.CrossRef
7.
go back to reference Ennis-King, J., Preston, I., & Paterson, L. (2005). Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Physics of Fluids 17(8), 084107–084107-15. Ennis-King, J., Preston, I., & Paterson, L. (2005). Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Physics of Fluids 17(8), 084107–084107-15.
8.
go back to reference Foster, T. D. (1965). Onset of convection in a layer of fluid cooled from above. Physics of Fluids, 8, 1770.CrossRef Foster, T. D. (1965). Onset of convection in a layer of fluid cooled from above. Physics of Fluids, 8, 1770.CrossRef
10.
go back to reference Nordbotten, J. M., & Celia, M. A. (2011). Geological Storage of CO 2 : Modeling Approaches for Large-Scale Simulation2011: Wiley. com. Nordbotten, J. M., & Celia, M. A. (2011). Geological Storage of CO 2 : Modeling Approaches for Large-Scale Simulation2011: Wiley. com.
11.
go back to reference Nordbotten, J. M., Celia, M. A., & Bachu, S. (2005). Injection and storage of CO2 in deep saline aquifers: Analytical solution for CO2 plume evolution during injection. Transport in Porous Media, 58(3), 339–360.CrossRef Nordbotten, J. M., Celia, M. A., & Bachu, S. (2005). Injection and storage of CO2 in deep saline aquifers: Analytical solution for CO2 plume evolution during injection. Transport in Porous Media, 58(3), 339–360.CrossRef
12.
go back to reference Ranganathan, P., et al. (2012). Numerical simulation of natural convection in heterogeneous porous media for CO2 geological storage. Transport in Porous Media, 95(1), 25–54.CrossRef Ranganathan, P., et al. (2012). Numerical simulation of natural convection in heterogeneous porous media for CO2 geological storage. Transport in Porous Media, 95(1), 25–54.CrossRef
13.
go back to reference Riaz, A., et al. (2006). Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. Journal of Fluid Mechanics, 548, 87–111.MathSciNetCrossRef Riaz, A., et al. (2006). Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. Journal of Fluid Mechanics, 548, 87–111.MathSciNetCrossRef
14.
go back to reference Walker, K. L., & Homsy, G.M. (1978). Convection in a porous cavity. Journal of Fluid Mechanics, 87(Part 3), 449–474. Walker, K. L., & Homsy, G.M. (1978). Convection in a porous cavity. Journal of Fluid Mechanics, 87(Part 3), 449–474.
15.
go back to reference Van Duijn, C., Pieters, G., & Raats, P. (2004). Steady flows in unsaturated soils are stable. Transport in Porous Media, 57(2), 215–244.MathSciNetCrossRef Van Duijn, C., Pieters, G., & Raats, P. (2004). Steady flows in unsaturated soils are stable. Transport in Porous Media, 57(2), 215–244.MathSciNetCrossRef
16.
go back to reference Meulenbroek, B., Farajzadeh, R., & Bruining, H. (2013). The effect of interface movement and viscosity variation on the stability of a diffusive interface between aqueous and gaseous CO2. Physics of Fluids (1994-present) 25(7), 074103. Meulenbroek, B., Farajzadeh, R., & Bruining, H. (2013). The effect of interface movement and viscosity variation on the stability of a diffusive interface between aqueous and gaseous CO2. Physics of Fluids (1994-present) 25(7), 074103.
17.
go back to reference Myint, P. C., & Firoozabadi, A. (2013). Onset of convection with fluid compressibility and interface movement. Physics of Fluids, 25, 094105.CrossRef Myint, P. C., & Firoozabadi, A. (2013). Onset of convection with fluid compressibility and interface movement. Physics of Fluids, 25, 094105.CrossRef
18.
go back to reference Lapwood, E. (1948). Convection of a fluid in a porous medium. Proceedings of the Cambridge. Lapwood, E. (1948). Convection of a fluid in a porous medium. Proceedings of the Cambridge.
19.
go back to reference Weir, G., White, S., & Kissling, W. (1995). Reservoir storage and containment of greenhouse gases. Energy Conversion and Management, 36(6), 531–534.CrossRef Weir, G., White, S., & Kissling, W. (1995). Reservoir storage and containment of greenhouse gases. Energy Conversion and Management, 36(6), 531–534.CrossRef
20.
go back to reference Farajzadeh, R., et al. (2007). Mass transfer of CO2 into water and surfactant solutions. Petroleum Science and Technology, 25(12), 1493–1511.CrossRef Farajzadeh, R., et al. (2007). Mass transfer of CO2 into water and surfactant solutions. Petroleum Science and Technology, 25(12), 1493–1511.CrossRef
21.
go back to reference Farajzadeh, R., et al. (2007). Numerical simulation of density-driven natural convection in porous media with application for CO2 injection projects. International Journal of Heat and Mass Transfer, 50(25), 5054–5064.CrossRefMATH Farajzadeh, R., et al. (2007). Numerical simulation of density-driven natural convection in porous media with application for CO2 injection projects. International Journal of Heat and Mass Transfer, 50(25), 5054–5064.CrossRefMATH
22.
go back to reference Farajzadeh, R., Zitha, P. L., & Bruining, J. (2009). Enhanced mass transfer of CO2 into water: Experiment and modeling. Industrial and Engineering Chemistry Research, 48(13), 6423–6431.CrossRef Farajzadeh, R., Zitha, P. L., & Bruining, J. (2009). Enhanced mass transfer of CO2 into water: Experiment and modeling. Industrial and Engineering Chemistry Research, 48(13), 6423–6431.CrossRef
23.
go back to reference Yang, C., & Gu, Y. (2006). Accelerated mass transfer of CO2 in reservoir brine due to density-driven natural convection at high pressures and elevated temperatures. Industrial and Engineering Chemistry Research, 45(8), 2430–2436.CrossRef Yang, C., & Gu, Y. (2006). Accelerated mass transfer of CO2 in reservoir brine due to density-driven natural convection at high pressures and elevated temperatures. Industrial and Engineering Chemistry Research, 45(8), 2430–2436.CrossRef
24.
go back to reference Nazari Moghaddam, R., & Rostami, B. (2012). Reply to the “Comments on the paper ‘Quantification of density-driven natural convection for dissolution mechanism in CO2 sequestration’ by R. Nazari Moghaddam et al. (2011)”. Transport in Porous Media, 93(1), 175–178. Nazari Moghaddam, R., & Rostami, B. (2012). Reply to the “Comments on the paper ‘Quantification of density-driven natural convection for dissolution mechanism in CO2 sequestration’ by R. Nazari Moghaddam et al. (2011)”. Transport in Porous Media, 93(1), 175–178.
25.
go back to reference Okhotsimskii, A., & Hozawa, M. (1998). Schlieren visualization of natural convection in binary gas–liquid systems. Chemical Engineering Science, 53(14), 2547–2573.CrossRef Okhotsimskii, A., & Hozawa, M. (1998). Schlieren visualization of natural convection in binary gas–liquid systems. Chemical Engineering Science, 53(14), 2547–2573.CrossRef
26.
go back to reference Kneafsey, T. J., & Pruess, K. (2010). Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection. Transport in Porous Media, 82(1), 123–139.CrossRef Kneafsey, T. J., & Pruess, K. (2010). Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection. Transport in Porous Media, 82(1), 123–139.CrossRef
27.
go back to reference Settles, G. S. (2001). Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media. 2001. Berlin: Springer. Settles, G. S. (2001). Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media. 2001. Berlin: Springer.
28.
go back to reference Parkhurst, D. L., & Appelo, C. (2013). Description of input and examples for PHREEQC version 3- A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Techniques and Methods, Book 6, Modeling Techniques, 2013. Parkhurst, D. L., & Appelo, C. (2013). Description of input and examples for PHREEQC version 3- A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Techniques and Methods, Book 6, Modeling Techniques, 2013.
29.
go back to reference Randall, M., & Failey, C. F. (1927). The Activity Coefficient of Gases in Aqueous Salt Solutions. Chemical Reviews, 4(3), 271–284.CrossRef Randall, M., & Failey, C. F. (1927). The Activity Coefficient of Gases in Aqueous Salt Solutions. Chemical Reviews, 4(3), 271–284.CrossRef
30.
go back to reference Feynman, R., Leighten, R., & Sands, M. (1965). The Feynman Lectures on Physics. Reading: Addison-Wesley Pub. Comp. Feynman, R., Leighten, R., & Sands, M. (1965). The Feynman Lectures on Physics. Reading: Addison-Wesley Pub. Comp.
31.
go back to reference Song, Y., et al. (2003). Measurement on CO2 Solution Density by Optical Technology. Journal of Visualization, 6(1), 41–51.CrossRef Song, Y., et al. (2003). Measurement on CO2 Solution Density by Optical Technology. Journal of Visualization, 6(1), 41–51.CrossRef
32.
go back to reference Subedi, D., et al. (2006). Study of temperature and concentration dependence of refractive index of liquids using a novel technique. Kathmandu University Journal of Science, Engineering and Technology, 2(1), 1–7. Subedi, D., et al. (2006). Study of temperature and concentration dependence of refractive index of liquids using a novel technique. Kathmandu University Journal of Science, Engineering and Technology, 2(1), 1–7.
33.
go back to reference Mosteiro, L., et al. (2001). Density, speed of sound, refractive index and dielectric permittivity of (diethyl carbonate+ n-decane) at several temperatures. The Journal of Chemical Thermodynamics, 33(7), 787–801.CrossRef Mosteiro, L., et al. (2001). Density, speed of sound, refractive index and dielectric permittivity of (diethyl carbonate+ n-decane) at several temperatures. The Journal of Chemical Thermodynamics, 33(7), 787–801.CrossRef
34.
go back to reference Bao, B., et al. (2012). Detecting Supercritical CO2 in Brine at Sequestration Pressure with an Optical Fiber Sensor. Environmental Science and Technology, 47(1), 306–313.CrossRef Bao, B., et al. (2012). Detecting Supercritical CO2 in Brine at Sequestration Pressure with an Optical Fiber Sensor. Environmental Science and Technology, 47(1), 306–313.CrossRef
35.
go back to reference Gatej, A., Wasselowski, J., & Loosen, P. (2012). Using adaptive weighted least squares approximation for coupling thermal and optical simulation. Applied Optics, 51(28), 6718–6725.CrossRef Gatej, A., Wasselowski, J., & Loosen, P. (2012). Using adaptive weighted least squares approximation for coupling thermal and optical simulation. Applied Optics, 51(28), 6718–6725.CrossRef
36.
go back to reference Rimmer, M.P. (1983). Ray tracing in inhomogeneous media. in 1983 International Technical Conference/Europe. International Society for Optics and Photonics. Rimmer, M.P. (1983). Ray tracing in inhomogeneous media. in 1983 International Technical Conference/Europe. International Society for Optics and Photonics.
37.
go back to reference Sharma, A., Kumar, D. V., & Ghatak, A. K. (1982). Tracing rays through graded-index media: A new method. Applied Optics, 21(6), 984–987.CrossRef Sharma, A., Kumar, D. V., & Ghatak, A. K. (1982). Tracing rays through graded-index media: A new method. Applied Optics, 21(6), 984–987.CrossRef
38.
go back to reference van der Net, A., et al. (2007). Simulating and interpretating images of foams with computational ray-tracing techniques. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 309(1), 159–176. van der Net, A., et al. (2007). Simulating and interpretating images of foams with computational ray-tracing techniques. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 309(1), 159–176.
39.
go back to reference Wu, Z. S., et al. (1997). Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres. Applied Optics, 36(21), 5188–5198.CrossRef Wu, Z. S., et al. (1997). Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres. Applied Optics, 36(21), 5188–5198.CrossRef
Metadata
Title
Visualization and Numerical Investigation of Natural Convection Flow of CO2 in Aqueous and Oleic Systems
Author
Roozbeh Khosrokhavar
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-23087-0_2