Skip to main content
Top

2023 | OriginalPaper | Chapter

4. Wake Structure and Swimming Performance of the Cownose Ray

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter describes the kinematics of cownose ray swimming, relating it to fin geometry and skeletal structure. The equation of the deformed fin surface is presented, and the influence of different kinematic parameters on fin movement is analyzed. The numerical implementation of the CFD model of cownose ray swimming is presented, and finally, the results are analyzed, highlighting how the swimming performances and the wake structure change according to different kinematic parameters. The main parameters that affect swimming performances are frequency and wavelength of fin motion and frequency resulted in being proportional to the swimming velocity, and it did not affect the dimensionless parameters like energy efficiency and the Strouhal number, whereas a variation in wavelength implies changing the angle of attack of the fin, resulting in a different flow and strongly affecting all swimming performances. The vortices in the wake form a Reverse Karman Street, and vortex rings are connected like in a chain, similarly to other swimming animals, and for some wavelengths, a leading-edge vortex can be observed too. The energy efficiency is one of the highest among fishes, reaching 89% for the best combination of parameters, and the Strouhal number of most analyzed swimming motions is comprised between 0.2 and 0.4.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu G, Ren Y, Zhu J, Bart-Smith H, Dong H (2015) Thrust producing mechanisms in ray-inspired underwater vehicle propulsion. Theor Appl Mech Lett 5:54–57CrossRef Liu G, Ren Y, Zhu J, Bart-Smith H, Dong H (2015) Thrust producing mechanisms in ray-inspired underwater vehicle propulsion. Theor Appl Mech Lett 5:54–57CrossRef
2.
go back to reference Fish FE, Schreiber CM, Moored KW, Liu G, Dong H, Bart-Smith H (2016) Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta. Aerospace 3(20):3030020 Fish FE, Schreiber CM, Moored KW, Liu G, Dong H, Bart-Smith H (2016) Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta. Aerospace 3(20):3030020
3.
go back to reference Lighthill MJ (1969) Hydromechanics of aquatic animal propulsion. Ann Rev Fluid Mech 1:413–446CrossRef Lighthill MJ (1969) Hydromechanics of aquatic animal propulsion. Ann Rev Fluid Mech 1:413–446CrossRef
4.
go back to reference Eloy C (2012) Optimal strouhal number for swimming animals. J Fluids Struct 30:205–218CrossRef Eloy C (2012) Optimal strouhal number for swimming animals. J Fluids Struct 30:205–218CrossRef
5.
go back to reference Anderson JM, Streitlien K, Barrett DS, Triantafyllou MS (1998) Oscillating foils of high propulsive efficiency. J Fluid Mech 360:41–72MathSciNetCrossRefMATH Anderson JM, Streitlien K, Barrett DS, Triantafyllou MS (1998) Oscillating foils of high propulsive efficiency. J Fluid Mech 360:41–72MathSciNetCrossRefMATH
6.
go back to reference Schnipper T, Andersen A, Bohr T (2009) Vortex wakes of a flapping foil. J Fluid Mech 633:411–423CrossRefMATH Schnipper T, Andersen A, Bohr T (2009) Vortex wakes of a flapping foil. J Fluid Mech 633:411–423CrossRefMATH
7.
go back to reference Clark RP, Smits AJ (2006) Thrust production and wake structure of a batoid-inspired oscillating fin. J Fluid Mech 562:415–429CrossRefMATH Clark RP, Smits AJ (2006) Thrust production and wake structure of a batoid-inspired oscillating fin. J Fluid Mech 562:415–429CrossRefMATH
8.
go back to reference Dewey PA, Carriou A, Smits AJ (2012) On the relationship between efficiency and wake structure of a batoid-inspired oscillating fin. J Fluid Mech 691:245–266CrossRefMATH Dewey PA, Carriou A, Smits AJ (2012) On the relationship between efficiency and wake structure of a batoid-inspired oscillating fin. J Fluid Mech 691:245–266CrossRefMATH
9.
go back to reference Bottom RG, Borazjani I, Blevins EL, Lauder GV (2016) Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex. J Fluid Mech 788:407–443MathSciNetCrossRefMATH Bottom RG, Borazjani I, Blevins EL, Lauder GV (2016) Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex. J Fluid Mech 788:407–443MathSciNetCrossRefMATH
10.
go back to reference Borazjani I, Daghooghi M (2012) The fish tail motion forms an attached leading edge vortex. Proc R Soc B 280:20122071CrossRef Borazjani I, Daghooghi M (2012) The fish tail motion forms an attached leading edge vortex. Proc R Soc B 280:20122071CrossRef
11.
go back to reference Lu H, Yeoy KS, Chew C (2018) Effect of pectoral fin kinematics on manta ray propulsion. Mod Phys Lett B 32(12):1840025MathSciNetCrossRef Lu H, Yeoy KS, Chew C (2018) Effect of pectoral fin kinematics on manta ray propulsion. Mod Phys Lett B 32(12):1840025MathSciNetCrossRef
12.
go back to reference Rosemberger LJ (2001) Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J Exp Biol 204:379–394CrossRef Rosemberger LJ (2001) Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J Exp Biol 204:379–394CrossRef
13.
go back to reference Russo RS, Blemker SS, Fish FE, Bart-Smith H (2015) Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design. Bioinspiration Biomim 10:046002CrossRef Russo RS, Blemker SS, Fish FE, Bart-Smith H (2015) Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design. Bioinspiration Biomim 10:046002CrossRef
14.
go back to reference Huang H, Sheng C, Wu J, Wu G, Zhou C, Wang H (2021) Hydrodynamic analysis and motion simulation of fin and propeller driven manta ray robot. Appl Ocean Res 108:102528CrossRef Huang H, Sheng C, Wu J, Wu G, Zhou C, Wang H (2021) Hydrodynamic analysis and motion simulation of fin and propeller driven manta ray robot. Appl Ocean Res 108:102528CrossRef
17.
go back to reference Taylor GK, Nudds RL, Thomas ALR (2003) Flying and swimming animals cruise at a strouhal number tuned for high power efficiency. Lett Nat 425:707–710CrossRef Taylor GK, Nudds RL, Thomas ALR (2003) Flying and swimming animals cruise at a strouhal number tuned for high power efficiency. Lett Nat 425:707–710CrossRef
18.
go back to reference Taylor G (2018) Simple scaling law predicts peak efficiency in oscillatory propulsion. PNAS 115(32):8063–8065CrossRef Taylor G (2018) Simple scaling law predicts peak efficiency in oscillatory propulsion. PNAS 115(32):8063–8065CrossRef
Metadata
Title
Wake Structure and Swimming Performance of the Cownose Ray
Author
Giovanni Bianchi
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-30548-1_4

Premium Partners