Skip to main content
Top

2014 | OriginalPaper | Chapter

6. Waste Thermal Energy Harvesting (III): Storage with Phase Change Materials

Authors : Ling Bing Kong, Tao Li, Huey Hoon Hng, Freddy Boey, Tianshu Zhang, Sean Li

Published in: Waste Energy Harvesting

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In last two chapters, both methods to harvest waste thermal energy through the conversion to electricity. In this chapter, energy storage as an alternative method to harvest waste thermal energy, especially by using phase change materials (PCMs), will be presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Gil, M. Medrano, I. Martorell, A. Lazaro, P. Dolado, B. Zalba, L.F. Cabeza, State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renew. Sustain. Energy Rev. 14, 31–55 (2010) A. Gil, M. Medrano, I. Martorell, A. Lazaro, P. Dolado, B. Zalba, L.F. Cabeza, State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renew. Sustain. Energy Rev. 14, 31–55 (2010)
2.
go back to reference S.M. Hasnain, Review on sustainable thermal energy storage technologies, part I: heat storage materials and techniques. Energy Convers. Manage. 39, 1127–1138 (1998) S.M. Hasnain, Review on sustainable thermal energy storage technologies, part I: heat storage materials and techniques. Energy Convers. Manage. 39, 1127–1138 (1998)
3.
go back to reference A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318–345 (2009) A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318–345 (2009)
4.
go back to reference G.A. Lane, H.E. Rossow, Encapsulation of heat of fusion storage materials, in Proceedings of 2 nd South Eastern Conference on Application of Solar Energy, pp. 442–55 (1976) G.A. Lane, H.E. Rossow, Encapsulation of heat of fusion storage materials, in Proceedings of 2 nd South Eastern Conference on Application of Solar Energy, pp. 442–55 (1976)
5.
go back to reference R. Biswas, Thermal storage using sodium sulfate decahydrate and water. Sol. Energy 99, 99–100 (1977) R. Biswas, Thermal storage using sodium sulfate decahydrate and water. Sol. Energy 99, 99–100 (1977)
6.
go back to reference B. Charlsson, H. Stymmeand, G. Wattermark, An incongruent heat of fusion system CaCl2·6H2O made congruent through modification of chemical composition of the system. Sol. Energy 23, 333–350 (1979) B. Charlsson, H. Stymmeand, G. Wattermark, An incongruent heat of fusion system CaCl2·6H2O made congruent through modification of chemical composition of the system. Sol. Energy 23, 333–350 (1979)
7.
go back to reference S. Herrick, A rolling cylinder latent heat storage device for solar heating/cooling. ASHRAE Tans. 85, 512–515 (1979) S. Herrick, A rolling cylinder latent heat storage device for solar heating/cooling. ASHRAE Tans. 85, 512–515 (1979)
8.
go back to reference D. Kearney, B. Kelly, U. Herrmann, R. Cable, J. Pacheco, R. Mahoney, H. Price, D. Blake, P. Nava, N. Potrovitza, Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy 29, 861–870 (2004) D. Kearney, B. Kelly, U. Herrmann, R. Cable, J. Pacheco, R. Mahoney, H. Price, D. Blake, P. Nava, N. Potrovitza, Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy 29, 861–870 (2004)
9.
go back to reference U. Herrmann, B. Kelly, H. Price, Two-tank molten salt storage for parabolic trough solar power plants. Energy 29, 883–893 (2004) U. Herrmann, B. Kelly, H. Price, Two-tank molten salt storage for parabolic trough solar power plants. Energy 29, 883–893 (2004)
10.
go back to reference D. Brosseau, J.W. Kelton, D. Ray, M. Edgar, K. Chisman, B. Emms, Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants. J. Sol. Energy Eng. Trans. ASME 127, 109–116 (2005) D. Brosseau, J.W. Kelton, D. Ray, M. Edgar, K. Chisman, B. Emms, Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants. J. Sol. Energy Eng. Trans. ASME 127, 109–116 (2005)
11.
go back to reference J. Stefan, Uber einge problem der theoric der warmeleitung, S. B. Wein. Acad. Mat. Natur. 98, 173–484 (1989) J. Stefan, Uber einge problem der theoric der warmeleitung, S. B. Wein. Acad. Mat. Natur. 98, 173–484 (1989)
12.
go back to reference H.S. Carslaw, J.C. Jager, Conduction of Heat in Solids, 2nd edn. (Oxford University Press, London, 1973) H.S. Carslaw, J.C. Jager, Conduction of Heat in Solids, 2nd edn. (Oxford University Press, London, 1973)
13.
go back to reference V.J. Lauardini, Heat Transfer in Cold Climates (Van Nostrand, New York, 1981) V.J. Lauardini, Heat Transfer in Cold Climates (Van Nostrand, New York, 1981)
14.
go back to reference T.R. Goodman, The heat balance integral and its application in problems involving a change. J. Sol. Energy Eng. Trans. ASME 80, 335–342 (1958) T.R. Goodman, The heat balance integral and its application in problems involving a change. J. Sol. Energy Eng. Trans. ASME 80, 335–342 (1958)
15.
go back to reference L.T. Yeh, B.T. Chung, Solidification and melting of material subjected to convention and radiation. J. Space Cr. Rockets 12, 329–334 (1975) L.T. Yeh, B.T. Chung, Solidification and melting of material subjected to convention and radiation. J. Space Cr. Rockets 12, 329–334 (1975)
16.
go back to reference J. Crank, R. Gupta, Isothermal migration in two dimensions. Int. J. Heat Mass Transf. 18, 1101–1117 (1975) J. Crank, R. Gupta, Isothermal migration in two dimensions. Int. J. Heat Mass Transf. 18, 1101–1117 (1975)
17.
go back to reference D. Buddhi, N.K. Bansal, R.L. Sawhney, M.S. Sodha, Solar thermal storage systems using phase change materials. Int. J. Energy Res. 12, 547–555 (1988) D. Buddhi, N.K. Bansal, R.L. Sawhney, M.S. Sodha, Solar thermal storage systems using phase change materials. Int. J. Energy Res. 12, 547–555 (1988)
18.
go back to reference A. Lazaridas, A numerical solution of the multidimensional solidification (or melting) problem. Int. J. Heat Mass Transf. 13, 1459–1477 (1970) A. Lazaridas, A numerical solution of the multidimensional solidification (or melting) problem. Int. J. Heat Mass Transf. 13, 1459–1477 (1970)
19.
go back to reference C. Bonacina, G. Comini, A. Fasano, M. Primicerio, Numerical solution phase change problems. Int. J. Heat Mass Transf. 16, 1825–1832 (1973) C. Bonacina, G. Comini, A. Fasano, M. Primicerio, Numerical solution phase change problems. Int. J. Heat Mass Transf. 16, 1825–1832 (1973)
20.
go back to reference G. Comini, S. Del Guidice, R.W. Lewis, O.C. Zienkiewicz, Finite element solution of non-linear heat conduction with phase changes. Int. J. Numer. Methods Eng. 8, 613–624 (1974)MATH G. Comini, S. Del Guidice, R.W. Lewis, O.C. Zienkiewicz, Finite element solution of non-linear heat conduction with phase changes. Int. J. Numer. Methods Eng. 8, 613–624 (1974)MATH
21.
go back to reference III W. Rolph, K.J. Bathe, An efficient algorithm for analysis of nonlinear heat transfer with phase change. Int. J. Numer. Methods Eng. 18, 119–134 (1982) III W. Rolph, K.J. Bathe, An efficient algorithm for analysis of nonlinear heat transfer with phase change. Int. J. Numer. Methods Eng. 18, 119–134 (1982)
22.
go back to reference J. Yoo, B. Rubinsky, Numerical computation using finite elements for the moving interface in heat transfer problems with phase change transformation. Numer. Heat Transf. 6, 209–222 (1983)MATH J. Yoo, B. Rubinsky, Numerical computation using finite elements for the moving interface in heat transfer problems with phase change transformation. Numer. Heat Transf. 6, 209–222 (1983)MATH
23.
go back to reference R. Bounerot, P. Janet, Numerical computation of free boundary for the two dimensional Stefan problems by space-time finite elements. J. Comput. Phys. 25, 163–181 (1977) R. Bounerot, P. Janet, Numerical computation of free boundary for the two dimensional Stefan problems by space-time finite elements. J. Comput. Phys. 25, 163–181 (1977)
24.
go back to reference N. Shamsunder, E. Sparrow, Analysis of multidimensional phase change via the enthalpy model. J. Heat Transf. Trans. ASME 19, 333–340 (1975) N. Shamsunder, E. Sparrow, Analysis of multidimensional phase change via the enthalpy model. J. Heat Transf. Trans. ASME 19, 333–340 (1975)
25.
go back to reference S.E. Hibbert, N.C. Markatos, V.R. Voller, Computer simulation of moving interface, convective, phase change process. Int. J. Heat Mass Transf. 31, 1785–1795 (1988)MATH S.E. Hibbert, N.C. Markatos, V.R. Voller, Computer simulation of moving interface, convective, phase change process. Int. J. Heat Mass Transf. 31, 1785–1795 (1988)MATH
26.
go back to reference C. Bonacina, G. Cominl, A. Fasano, M. Primicerio, On the estimation of thermophysical properties in nonlinear heat-conduction problems. Int. J. Heat Mass Transf. 17, 861–867 (1974) C. Bonacina, G. Cominl, A. Fasano, M. Primicerio, On the estimation of thermophysical properties in nonlinear heat-conduction problems. Int. J. Heat Mass Transf. 17, 861–867 (1974)
27.
go back to reference M. Costa, D. Buddhi, A. Oliva, Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction. Energy Convers. Manage. 39, 319–330 (1998) M. Costa, D. Buddhi, A. Oliva, Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction. Energy Convers. Manage. 39, 319–330 (1998)
28.
go back to reference A.J. Dalhuijsen, A. Segal, Comparison of finite element techniques for conduction problems. Int. J. Number. Meth. Eng. 23, 1807–1829 (1986)MATH A.J. Dalhuijsen, A. Segal, Comparison of finite element techniques for conduction problems. Int. J. Number. Meth. Eng. 23, 1807–1829 (1986)MATH
29.
go back to reference C. Wen, J.W. Sheffled, M.P. O’Dell, J.E. Leland, Analytical and experimental investigation of melting heat transfer. J. Thermophys. Heat Transf. 3, 330–339 (1989) C. Wen, J.W. Sheffled, M.P. O’Dell, J.E. Leland, Analytical and experimental investigation of melting heat transfer. J. Thermophys. Heat Transf. 3, 330–339 (1989)
30.
go back to reference C.R. Swaminathan, V.R. Vollar, On the enthalpy method. Int. J. Num. Meth. Heat Fluid Flow 3, 233–244 (1993) C.R. Swaminathan, V.R. Vollar, On the enthalpy method. Int. J. Num. Meth. Heat Fluid Flow 3, 233–244 (1993)
31.
go back to reference V.R. Voller, M. Cross, N.C. Markatos, An enthalpy method for convection/fusion phase change. Int. J. Numer. Methods. Eng. 24, 271–284 (1987)MATH V.R. Voller, M. Cross, N.C. Markatos, An enthalpy method for convection/fusion phase change. Int. J. Numer. Methods. Eng. 24, 271–284 (1987)MATH
32.
go back to reference A. Laoud, M. Lacroix, Thermal performance of a latent heat energy storage ventilated panel for electric load management. Int. J. Heat Mass Transf. 42, 275–286 (1999) A. Laoud, M. Lacroix, Thermal performance of a latent heat energy storage ventilated panel for electric load management. Int. J. Heat Mass Transf. 42, 275–286 (1999)
33.
go back to reference J. Bansszek, R. Domanski, M. Rebow, F. El-Sagier, Experimental study of solid-liquid phase change in a spiral thermal energy storage unit. Appl. Therm. Eng. 19, 1253–1277 (1999) J. Bansszek, R. Domanski, M. Rebow, F. El-Sagier, Experimental study of solid-liquid phase change in a spiral thermal energy storage unit. Appl. Therm. Eng. 19, 1253–1277 (1999)
34.
go back to reference M. Lacroix, Numerical simulation of a shell and tube latent heat thermal energy storage unit. Sol. Energy 50, 357–367 (1993) M. Lacroix, Numerical simulation of a shell and tube latent heat thermal energy storage unit. Sol. Energy 50, 357–367 (1993)
35.
go back to reference B. Zivkovic, I. Fujji, An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers. Sol. Energy 70, 51–61 (2001) B. Zivkovic, I. Fujji, An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers. Sol. Energy 70, 51–61 (2001)
36.
go back to reference P. Lamberg, K. Siren, Analytical model for melting in semi-infinite PCM storage with an internal fin. Heat Mass Transf. 39, 167–176 (2003) P. Lamberg, K. Siren, Analytical model for melting in semi-infinite PCM storage with an internal fin. Heat Mass Transf. 39, 167–176 (2003)
37.
go back to reference V.R. Voller, Fast implicit finite-difference method for the analysis of phase change problems. Numer. Heat Transf. Part B 17, 155–169 (1990) V.R. Voller, Fast implicit finite-difference method for the analysis of phase change problems. Numer. Heat Transf. Part B 17, 155–169 (1990)
38.
go back to reference A. Sharma, L.D. Won, D. Buddhi, J.U. Park, Numerical heat transfer studies of the fatty acids for different heat exchanger materials on the performance of a latent heat storage system. Renew. Energy 30, 2179–2187 (2005) A. Sharma, L.D. Won, D. Buddhi, J.U. Park, Numerical heat transfer studies of the fatty acids for different heat exchanger materials on the performance of a latent heat storage system. Renew. Energy 30, 2179–2187 (2005)
39.
go back to reference C.R. Chen, A. Sharma, Numerical investigation of melt fraction of PCMs in a latent heat storage system. J. Eng. Appl. Sci. 1, 437–444 (2006) C.R. Chen, A. Sharma, Numerical investigation of melt fraction of PCMs in a latent heat storage system. J. Eng. Appl. Sci. 1, 437–444 (2006)
40.
go back to reference C.R. Chen, A. Sharma, S.K. Tyagi, D. Buddhi, Numerical heat transfer studies of PCMs used in a box type solar cooker. Renew. Energy 33, 1121–1129 (2008) C.R. Chen, A. Sharma, S.K. Tyagi, D. Buddhi, Numerical heat transfer studies of PCMs used in a box type solar cooker. Renew. Energy 33, 1121–1129 (2008)
41.
go back to reference A. Sharma, S.D. Sharma, D. Buddhi, L.D. Won, Effect of thermo physical properties of heat exchanger material on the performance of latent heat storage system using an enthalpy method. Int. J. Energy Res. 30, 191–201 (2006) A. Sharma, S.D. Sharma, D. Buddhi, L.D. Won, Effect of thermo physical properties of heat exchanger material on the performance of latent heat storage system using an enthalpy method. Int. J. Energy Res. 30, 191–201 (2006)
42.
go back to reference Q. He, W.N. Zhang, A study on latent heat storage exchangers with the high temperature phase-change material. Int. J. Energy Res. 25, 331–341 (2001) Q. He, W.N. Zhang, A study on latent heat storage exchangers with the high temperature phase-change material. Int. J. Energy Res. 25, 331–341 (2001)
43.
go back to reference H. Michels, R. Pitz-Paal, Cascaded latent heat storage for parabolic trough solar power plants. Sol. Energy 81, 829–837 (2007) H. Michels, R. Pitz-Paal, Cascaded latent heat storage for parabolic trough solar power plants. Sol. Energy 81, 829–837 (2007)
44.
go back to reference Z.X. Gong, A.S. Mujumdar, Cyclic heat transfer in a novel storage unit of multiple phase change materials. Appl. Thermal Eng. 16, 807–815 (1996) Z.X. Gong, A.S. Mujumdar, Cyclic heat transfer in a novel storage unit of multiple phase change materials. Appl. Thermal Eng. 16, 807–815 (1996)
45.
go back to reference Z.X. Gong, A.S. Mujumdar, A new solar receiver thermal store for space based activities using multiple composite phase-change materials. J. Sol. Energy Eng. Trans. ASME 117, 215–220 (1995) Z.X. Gong, A.S. Mujumdar, A new solar receiver thermal store for space based activities using multiple composite phase-change materials. J. Sol. Energy Eng. Trans. ASME 117, 215–220 (1995)
46.
go back to reference H. Cui, X. Hou, X. Yuan, Energy analysis of space solar dynamic heat receivers. Sol. Energy 74, 303–308 (2003) H. Cui, X. Hou, X. Yuan, Energy analysis of space solar dynamic heat receivers. Sol. Energy 74, 303–308 (2003)
47.
go back to reference H. Cui, Y. Xing, Y. Guo, Z. Wang, H. Cui, X. Yuan, Numerical simulation and experimental investigation on unit heat exchange tube for solar heat receiver. Sol. Energy 82, 1229–1234 (2008) H. Cui, Y. Xing, Y. Guo, Z. Wang, H. Cui, X. Yuan, Numerical simulation and experimental investigation on unit heat exchange tube for solar heat receiver. Sol. Energy 82, 1229–1234 (2008)
48.
go back to reference C. Guo, W. Zhang, Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system. Energy Convers. Manage. 49, 919–927 (2008) C. Guo, W. Zhang, Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system. Energy Convers. Manage. 49, 919–927 (2008)
49.
go back to reference B. Yimer, M. Adami, Parametric study of phase change thermal energy storage systems for space application. Energy Convers. Manage. 38, 253–262 (1997) B. Yimer, M. Adami, Parametric study of phase change thermal energy storage systems for space application. Energy Convers. Manage. 38, 253–262 (1997)
50.
go back to reference A. Hoshi, D.R. Mills, A. Bittar, T.S. Saitoh, Screening of high melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR. Sol. Energy 79, 332–339 (2005) A. Hoshi, D.R. Mills, A. Bittar, T.S. Saitoh, Screening of high melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR. Sol. Energy 79, 332–339 (2005)
51.
go back to reference V. Morisson, M. Rady, E. Palomo, E. Arquis, Thermal energy storage systems for electricity production using solar energy direct steam generation technology. Chem. Eng. Process. 47, 499–507 (2008) V. Morisson, M. Rady, E. Palomo, E. Arquis, Thermal energy storage systems for electricity production using solar energy direct steam generation technology. Chem. Eng. Process. 47, 499–507 (2008)
52.
go back to reference H. Cui, X. Yuan, X. Hou, Thermal performance analysis for a heat receiver using multiple phase change materials. Appl. Therm. Eng. 23, 2353–2361 (2003) H. Cui, X. Yuan, X. Hou, Thermal performance analysis for a heat receiver using multiple phase change materials. Appl. Therm. Eng. 23, 2353–2361 (2003)
53.
go back to reference K. Lafdi, O. Mesalhy, A. Elyafy, Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications. Carbon 46, 159–168 (2008) K. Lafdi, O. Mesalhy, A. Elyafy, Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications. Carbon 46, 159–168 (2008)
54.
go back to reference D.B. Khillarkar, Z.X Gong, A.S. Mujumdar, Melting of a phase change material in concentric horizontal annuli of arbitrary cross-section. Appl. Therm. Eng. 20, 893–912 (2000) D.B. Khillarkar, Z.X Gong, A.S. Mujumdar, Melting of a phase change material in concentric horizontal annuli of arbitrary cross-section. Appl. Therm. Eng. 20, 893–912 (2000)
55.
go back to reference J. Yagi, T. Akiyama, Storage of thermal energy for effective use of waste heat from industries. J. Mater. Process. Technol. 48, 793–804 (1995) J. Yagi, T. Akiyama, Storage of thermal energy for effective use of waste heat from industries. J. Mater. Process. Technol. 48, 793–804 (1995)
56.
go back to reference A.A. Jalalzadeh-Azar, Performance comparison of high-temperature packed bed operation with PCM and sensible-heat pellets. Int. J. Energy Res. 21, 1039–1052 (1997) A.A. Jalalzadeh-Azar, Performance comparison of high-temperature packed bed operation with PCM and sensible-heat pellets. Int. J. Energy Res. 21, 1039–1052 (1997)
57.
go back to reference S. Jegadheeswaran, S.D. Pohekar, T. Kousksou, Exergy based performance evaluation of latent heat thermal storage system: a review. Renew. Sustain. Energy Rev. 14, 2580–2595 (2010) S. Jegadheeswaran, S.D. Pohekar, T. Kousksou, Exergy based performance evaluation of latent heat thermal storage system: a review. Renew. Sustain. Energy Rev. 14, 2580–2595 (2010)
58.
go back to reference A. Kaizawa, H. Kamano, A. Kawai, T. Jozuka, T. Senda, N. Maruoka, T. Akiyama, Thermal and flow behaviors in heat transportation container using phase change material, Energy Convers. Manage. 49, 698–706 (2008) A. Kaizawa, H. Kamano, A. Kawai, T. Jozuka, T. Senda, N. Maruoka, T. Akiyama, Thermal and flow behaviors in heat transportation container using phase change material, Energy Convers. Manage. 49, 698–706 (2008)
59.
go back to reference A. Mawire, M. McPherson, Experimental characterization of a thermal energy storage system using temperature and power controlled charging. Renew. Energy 33, 682–693 (2008) A. Mawire, M. McPherson, Experimental characterization of a thermal energy storage system using temperature and power controlled charging. Renew. Energy 33, 682–693 (2008)
60.
go back to reference A. Bejan, Two thermodynamic optima in the design of sensible heat units for energy storage. J. Heat Transf. 100, 708–712 (1978) A. Bejan, Two thermodynamic optima in the design of sensible heat units for energy storage. J. Heat Transf. 100, 708–712 (1978)
61.
go back to reference M.A. Rosen, N. Pedinelli, I. Dincer, Energy and exergy analyses of cold thermal storage systems. Int. J. Energy Res. 23, 1029–1038 (1999) M.A. Rosen, N. Pedinelli, I. Dincer, Energy and exergy analyses of cold thermal storage systems. Int. J. Energy Res. 23, 1029–1038 (1999)
62.
go back to reference M.A. Rosen, The exergy of stratified thermal energy storages. Sol. Energy 71, 173–185 (2001) M.A. Rosen, The exergy of stratified thermal energy storages. Sol. Energy 71, 173–185 (2001)
63.
go back to reference K. Kaygusuz, T. Ayhan, Exergy analysis of solar-assisted heat-pump systems for domestic heating. Energy 18, 1077–1085 (1993) K. Kaygusuz, T. Ayhan, Exergy analysis of solar-assisted heat-pump systems for domestic heating. Energy 18, 1077–1085 (1993)
64.
go back to reference A. Venkataramayya, K.N. Ramesh, Exergy analysis of latent heat storage systems with sensible heating and subcooling of PCM. Int. J. Energy Res. 22, 411–426 (1998) A. Venkataramayya, K.N. Ramesh, Exergy analysis of latent heat storage systems with sensible heating and subcooling of PCM. Int. J. Energy Res. 22, 411–426 (1998)
65.
go back to reference A. Sari, K. Kaygusuz, Energy and exergy calculations of latent heat energy storage systems. Energy Sources 22, 117–126 (2000) A. Sari, K. Kaygusuz, Energy and exergy calculations of latent heat energy storage systems. Energy Sources 22, 117–126 (2000)
66.
go back to reference H.H. Ozturk, Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for green house heating. Energy Convers. Manage. 46, 1523–1542 (2005) H.H. Ozturk, Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for green house heating. Energy Convers. Manage. 46, 1523–1542 (2005)
67.
go back to reference A. Koca, H.G. Oztop, T. Koyun, Y. Varol, Energy and exergy analysis of a latent heat storage system with phase change material for solar collector. Renew. Energy 33, 567–574 (2008) A. Koca, H.G. Oztop, T. Koyun, Y. Varol, Energy and exergy analysis of a latent heat storage system with phase change material for solar collector. Renew. Energy 33, 567–574 (2008)
68.
go back to reference T. Kousksou, T. El Rhafiki, A. Arid, E. Schall, Y. Zeraouli, Power, efficiency, and irreversibility of latent energy systems. J. Thermophy. Heat Transf. 22, 234–239 (2008) T. Kousksou, T. El Rhafiki, A. Arid, E. Schall, Y. Zeraouli, Power, efficiency, and irreversibility of latent energy systems. J. Thermophy. Heat Transf. 22, 234–239 (2008)
69.
go back to reference A. Erek, I. Dincer, A new approach to energy and exergy analyses of latent heat storage unit. Heat Transf. Eng. 30, 506–515 (2009) A. Erek, I. Dincer, A new approach to energy and exergy analyses of latent heat storage unit. Heat Transf. Eng. 30, 506–515 (2009)
70.
go back to reference D. MacPee, I. Dincer, Thermodynamic analysis of freezing and melting processes in a bed of spherical PCM capsules. J. Sol. Energy Eng. Trans. ASME 131, 031017 (2009) D. MacPee, I. Dincer, Thermodynamic analysis of freezing and melting processes in a bed of spherical PCM capsules. J. Sol. Energy Eng. Trans. ASME 131, 031017 (2009)
71.
go back to reference I. Dincer, Y.A. Cengel, Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 3, 116–149 (2001) I. Dincer, Y.A. Cengel, Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 3, 116–149 (2001)
72.
go back to reference M.A. Rosen, Appropriate thermodynamic performance measures for closed systems for thermal energy storage. J. Sol. Energy Eng. Trans. ASME 114, 100–105 (1992) M.A. Rosen, Appropriate thermodynamic performance measures for closed systems for thermal energy storage. J. Sol. Energy Eng. Trans. ASME 114, 100–105 (1992)
73.
go back to reference T. Watanabe, A Kanzawa, Second law optimization of a latent heat storage system with PCMs having different melting points. Heat Recovery Syst. CHP 15, 641–653 (1995) T. Watanabe, A Kanzawa, Second law optimization of a latent heat storage system with PCMs having different melting points. Heat Recovery Syst. CHP 15, 641–653 (1995)
74.
go back to reference M.A. Rosen, I. Dincer, Exergy methods for assessing and comparing thermal storage systems. Int. J. Energy Res. 27, 415–530 (2003) M.A. Rosen, I. Dincer, Exergy methods for assessing and comparing thermal storage systems. Int. J. Energy Res. 27, 415–530 (2003)
75.
go back to reference Z.X. Gong, A.S. Mujumdar, Thermodyanamic optimization of the thermal process in energy storage using multiple phase change materials. Appl. Therm. Eng. 17, 1067–1083 (1996) Z.X. Gong, A.S. Mujumdar, Thermodyanamic optimization of the thermal process in energy storage using multiple phase change materials. Appl. Therm. Eng. 17, 1067–1083 (1996)
76.
go back to reference Y. Demirel, H.H. Ozturk, Thermoeconomics of seasonal latent heat storage systems. Int. J. Energy Res. 30, 1001–1012 (2006) Y. Demirel, H.H. Ozturk, Thermoeconomics of seasonal latent heat storage systems. Int. J. Energy Res. 30, 1001–1012 (2006)
77.
go back to reference R.J. Krane, A second law analysis of the optimum design and operation of thermal energy storage systems. Int. J. Heat Mass Transf. 30, 43–57 (1987) R.J. Krane, A second law analysis of the optimum design and operation of thermal energy storage systems. Int. J. Heat Mass Transf. 30, 43–57 (1987)
78.
go back to reference C. Bellecci, M. Conti, Phase change energy storage: entropy production, irreversibility, and second law efficiency. Sol. Energy 53, 163–170 (1994) C. Bellecci, M. Conti, Phase change energy storage: entropy production, irreversibility, and second law efficiency. Sol. Energy 53, 163–170 (1994)
79.
go back to reference M.M. Farid, A. Kanzawa, Thermal performance of a heat storage module using PCM’s with different melting temperatures: mathematical modeling. J. Sol. Energy Eng. Trans. ASME 111, 152–157 (1989) M.M. Farid, A. Kanzawa, Thermal performance of a heat storage module using PCM’s with different melting temperatures: mathematical modeling. J. Sol. Energy Eng. Trans. ASME 111, 152–157 (1989)
80.
go back to reference F. Strub, J.P. Bedecarrats, Numerical second law analysis of a refrigeration phase-change storage. Int. J. Thermodyn. 2, 133–138 (1999) F. Strub, J.P. Bedecarrats, Numerical second law analysis of a refrigeration phase-change storage. Int. J. Thermodyn. 2, 133–138 (1999)
81.
go back to reference F. Strub F and J. P. Bedecarrats, Thermodynamics of phase-change energy storage: the effects of undercooling on entropy generation during solidification. Int. J. Thermodyn. 3, 35–42 (2000) F. Strub F and J. P. Bedecarrats, Thermodynamics of phase-change energy storage: the effects of undercooling on entropy generation during solidification. Int. J. Thermodyn. 3, 35–42 (2000)
82.
go back to reference T. Kousksou, F. Strub, J.S. Lasvignottes, A. Jamil, J.P. Bedecarrats, Second law analysis of latent thermal storage for solar system. Sol. Energy Mater. Solar Cells 91, 1275–1281 (2007) T. Kousksou, F. Strub, J.S. Lasvignottes, A. Jamil, J.P. Bedecarrats, Second law analysis of latent thermal storage for solar system. Sol. Energy Mater. Solar Cells 91, 1275–1281 (2007)
83.
go back to reference M. Lacroix, Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube. Int. J. Heat Mass Transf. 36, 2083–2092 (1993) M. Lacroix, Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube. Int. J. Heat Mass Transf. 36, 2083–2092 (1993)
84.
go back to reference A. Erek, I. Dincer, An approach to entropy analysis of a latent heat storage module. Int. J. Therm. Sci. 47, 1077–1085 (2008) A. Erek, I. Dincer, An approach to entropy analysis of a latent heat storage module. Int. J. Therm. Sci. 47, 1077–1085 (2008)
85.
go back to reference H. El-Dessouky, F. Al-Juwayhel, Effectiveness of a thermal energy storage system using phase-change materials. Energy Convers. Manage. 38, 601–617 (1997) H. El-Dessouky, F. Al-Juwayhel, Effectiveness of a thermal energy storage system using phase-change materials. Energy Convers. Manage. 38, 601–617 (1997)
86.
go back to reference A. Bejan, Entropy Generation Minimization (CRC Press, London, 1996)MATH A. Bejan, Entropy Generation Minimization (CRC Press, London, 1996)MATH
87.
go back to reference C. Charach, A. Zemel, Thermodynamic analysis of latent heat storage in a shell-and-tube heat exchanger. J. Sol. Energy Eng. Trans. ASME 114, 93–99 (1992) C. Charach, A. Zemel, Thermodynamic analysis of latent heat storage in a shell-and-tube heat exchanger. J. Sol. Energy Eng. Trans. ASME 114, 93–99 (1992)
88.
go back to reference H. Bjustrom, B. Carlsson, An exergy analysis of sensible and latent heat storage. Heat Recovery Syst. CHP 5, 233–250 (1985) H. Bjustrom, B. Carlsson, An exergy analysis of sensible and latent heat storage. Heat Recovery Syst. CHP 5, 233–250 (1985)
89.
go back to reference F. Aghbalou, F. Badia, J. Illa, Exergetic optimization of solar collector and thermal energy storage system. Int. J. Heat Mass Transf. 49, 1255–1263 (2006)MATH F. Aghbalou, F. Badia, J. Illa, Exergetic optimization of solar collector and thermal energy storage system. Int. J. Heat Mass Transf. 49, 1255–1263 (2006)MATH
90.
go back to reference C. Charach, Second-law efficiency of an energy storage-removal cycle in a phase-change material shell-and-tube heat exchanger. J. Sol. Energy Eng. Trans. ASME 115, 240–243 (1993) C. Charach, Second-law efficiency of an energy storage-removal cycle in a phase-change material shell-and-tube heat exchanger. J. Sol. Energy Eng. Trans. ASME 115, 240–243 (1993)
91.
go back to reference H. Ettouney, H. El-Dessouky, E. Al-Kandari, Heat transfer characteristics during melting and solidification of phase change energy storage process. Ind. Eng. Chem. Res. 43, 5350–5357 (2004) H. Ettouney, H. El-Dessouky, E. Al-Kandari, Heat transfer characteristics during melting and solidification of phase change energy storage process. Ind. Eng. Chem. Res. 43, 5350–5357 (2004)
92.
go back to reference A. Valero, M.A. Lozano, An introduction of thermoeconomics. in Developments in the Design of Thermal Systems, ed. by R.F. Boehm (Cambridge, Cambridge University Press, 2005), pp. 203–223 A. Valero, M.A. Lozano, An introduction of thermoeconomics. in Developments in the Design of Thermal Systems, ed. by R.F. Boehm (Cambridge, Cambridge University Press, 2005), pp. 203–223
93.
go back to reference C.A. Frangopoulos, Thermoeconomic functional and optimization. Energy 19, 563–571 (1987) C.A. Frangopoulos, Thermoeconomic functional and optimization. Energy 19, 563–571 (1987)
94.
go back to reference D.J. Kim, A new thermoeconomic methodology for energy systems. Energy 35, 410–422 (2010) D.J. Kim, A new thermoeconomic methodology for energy systems. Energy 35, 410–422 (2010)
95.
go back to reference M.A. Lozano, A. Valero, Theory of the exergetic cost. Energy 18, 939–960 (1993) M.A. Lozano, A. Valero, Theory of the exergetic cost. Energy 18, 939–960 (1993)
96.
go back to reference B. Erlach, L. Serra, A. Valero, Structural theory as standard for thermoeconomics. Energy Convers. Manage. 40, 1627–1649 (1999) B. Erlach, L. Serra, A. Valero, Structural theory as standard for thermoeconomics. Energy Convers. Manage. 40, 1627–1649 (1999)
97.
go back to reference M.A. Badar, S.M. Zubair, A.A. Al-Farayedhi, Second-law-based thermoeconomic optimization of a sensible heat thermal energy storage system. Energy 18, 641–649 (1993) M.A. Badar, S.M. Zubair, A.A. Al-Farayedhi, Second-law-based thermoeconomic optimization of a sensible heat thermal energy storage system. Energy 18, 641–649 (1993)
98.
go back to reference M.A. Badar, S.M. Zubair, On thermoeconomic of a sensible heat thermal energy storage system. J. Sol. Energy Eng. Trans. ASME 117, 225–259 (1995) M.A. Badar, S.M. Zubair, On thermoeconomic of a sensible heat thermal energy storage system. J. Sol. Energy Eng. Trans. ASME 117, 225–259 (1995)
99.
go back to reference S.M. Zubair, M.A. Al-Naglah, Thermoeconomic optimization of a sensible heat thermal storage system: a complete cycle. ASME J. Energy Res. Techn. 121, 286–294 (1999) S.M. Zubair, M.A. Al-Naglah, Thermoeconomic optimization of a sensible heat thermal storage system: a complete cycle. ASME J. Energy Res. Techn. 121, 286–294 (1999)
100.
go back to reference A.A. Ghoneim, Comparison of theoretical models of phase change and sensible heat storage for air and water solar heating systems. Sol. Energy 42, 209–220 (1989) A.A. Ghoneim, Comparison of theoretical models of phase change and sensible heat storage for air and water solar heating systems. Sol. Energy 42, 209–220 (1989)
101.
go back to reference J. Prakash, H.P. Garg, G. Datta, A solar water heater with a built-in latent heat storage. Energy Convers. Manage. 25, 51–56 (1985) J. Prakash, H.P. Garg, G. Datta, A solar water heater with a built-in latent heat storage. Energy Convers. Manage. 25, 51–56 (1985)
102.
go back to reference N.K. Bansal, D. Buddhi, An analytical study of a latent heat storage system in a cylinder. Sol. Energy 33, 235–242 (1992) N.K. Bansal, D. Buddhi, An analytical study of a latent heat storage system in a cylinder. Sol. Energy 33, 235–242 (1992)
103.
go back to reference K. Kaygusuz, Experimental and theoretical investigation of latent heat storage for water based solar heating systems. Energy Convers. Manage. 36, 315–323 (1995) K. Kaygusuz, Experimental and theoretical investigation of latent heat storage for water based solar heating systems. Energy Convers. Manage. 36, 315–323 (1995)
104.
go back to reference Y. Rabin, I. Bar-Niv, E. Korin, B. Mikic, Integrated solar collector storage system based on a salt hydrate phase change material. Sol. Energy 55, 435–444 (1995) Y. Rabin, I. Bar-Niv, E. Korin, B. Mikic, Integrated solar collector storage system based on a salt hydrate phase change material. Sol. Energy 55, 435–444 (1995)
105.
go back to reference E-B.S. Mettawee, G.M.R. Assassa, Experimental study of a compact PCM solar collector. Energy 31, 2958–2968 (2006) E-B.S. Mettawee, G.M.R. Assassa, Experimental study of a compact PCM solar collector. Energy 31, 2958–2968 (2006)
106.
go back to reference L.F. Cabeza, M. Ibanez, C. Sole, J. Roca, M. Nogues, Experimentation with a water tank including a PCM module. Sol. Energy Mater. Solar Cells 90, 1273–1782 (2006) L.F. Cabeza, M. Ibanez, C. Sole, J. Roca, M. Nogues, Experimentation with a water tank including a PCM module. Sol. Energy Mater. Solar Cells 90, 1273–1782 (2006)
107.
go back to reference S. Canbazoglu, A. Sahinaslan, A. Ekmekyapar, Y. Gokhan Aksoy, F. Akarsu, Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water-heating system. Energy Build. 37, 235–242 (2005) S. Canbazoglu, A. Sahinaslan, A. Ekmekyapar, Y. Gokhan Aksoy, F. Akarsu, Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water-heating system. Energy Build. 37, 235–242 (2005)
108.
go back to reference D.J. Morrison, S.I. Abdel Khalik, Effects of phase change energy storage on the performance of air-based and liquid-based solar heating systems. Sol. Energy 20, 57–67 (1978) D.J. Morrison, S.I. Abdel Khalik, Effects of phase change energy storage on the performance of air-based and liquid-based solar heating systems. Sol. Energy 20, 57–67 (1978)
109.
go back to reference J.J. Jurinak, S.I. Adbel Khalik, On the performance of air-based solar heating systems utilizing phase change energy storage. Energy 4, 503–522 (1979) J.J. Jurinak, S.I. Adbel Khalik, On the performance of air-based solar heating systems utilizing phase change energy storage. Energy 4, 503–522 (1979)
110.
go back to reference A.A. Ghoneim, S.A. Klein, The effect of phase change material properties on the performance of solar air-based heating systems. Sol. Energy 42, 441–447 (1989) A.A. Ghoneim, S.A. Klein, The effect of phase change material properties on the performance of solar air-based heating systems. Sol. Energy 42, 441–447 (1989)
111.
go back to reference S.O. Enibe, Performance of a natural circulation solar air heating system with phase change material energy storage. Renew Energy 27, 69–86 (2002) S.O. Enibe, Performance of a natural circulation solar air heating system with phase change material energy storage. Renew Energy 27, 69–86 (2002)
112.
go back to reference G. Zhou, Y. Zhang, Q. Zhang, K. Lin, H. Di, Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates. Appl. Energy 84, 1068–1077 (2007) G. Zhou, Y. Zhang, Q. Zhang, K. Lin, H. Di, Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates. Appl. Energy 84, 1068–1077 (2007)
113.
go back to reference D. Buddhi, L.K. Sahoo, Solar cooker with latent heat storage design and experimental testing. Energy Convers.Manage. 38, 493–498 (1997) D. Buddhi, L.K. Sahoo, Solar cooker with latent heat storage design and experimental testing. Energy Convers.Manage. 38, 493–498 (1997)
114.
go back to reference S.D. Sharma, D. Buddhi, R.L. Sawhney, A. Sharma, Design, development and performance evaluation of a latent heat unit for evening cooking in a solar cooker. Energy Convers. Manage. 41, 1497–1508 (2000) S.D. Sharma, D. Buddhi, R.L. Sawhney, A. Sharma, Design, development and performance evaluation of a latent heat unit for evening cooking in a solar cooker. Energy Convers. Manage. 41, 1497–1508 (2000)
115.
go back to reference D. Buddhi, S.D. Sharma, A. Sharma, Thermal performance evaluation of a latent heat storage unit for late evening cooking in a solar cooker having three reflectors. Energy Convers. Manage. 44, 809–817 (2003) D. Buddhi, S.D. Sharma, A. Sharma, Thermal performance evaluation of a latent heat storage unit for late evening cooking in a solar cooker having three reflectors. Energy Convers. Manage. 44, 809–817 (2003)
116.
go back to reference S.D. Sharma, T. Iwata, H. Kitano, K. Sagara, Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit. Sol. Energy 78, 416–426 (2005) S.D. Sharma, T. Iwata, H. Kitano, K. Sagara, Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit. Sol. Energy 78, 416–426 (2005)
117.
go back to reference N.M. Nahar, Design, development and testing of a double reflector hot box solar cooker with a transparent insulation material. Renew. Energy 23, 167–179 (2001) N.M. Nahar, Design, development and testing of a double reflector hot box solar cooker with a transparent insulation material. Renew. Energy 23, 167–179 (2001)
118.
go back to reference K. Hung C.F. Abrams Jr., L.L. Coasts, C.G. Bowers Jr., Development of greenhouse bulk drying systems for solar energy utilization and planted mechanization. AHARE paper no. 75–1018, Am. Soc. Agric. Eng. St. Joseph, MI, (1975) K. Hung C.F. Abrams Jr., L.L. Coasts, C.G. Bowers Jr., Development of greenhouse bulk drying systems for solar energy utilization and planted mechanization. AHARE paper no. 75–1018, Am. Soc. Agric. Eng. St. Joseph, MI, (1975)
119.
go back to reference M. Kern and R. A. Aldrich, Phase change energy storage in a greenhouse solar heating system. ASME paper no. 79–4028. Am. Soc. Agric. Eng. St. Joseph, MI, (1979) M. Kern and R. A. Aldrich, Phase change energy storage in a greenhouse solar heating system. ASME paper no. 79–4028. Am. Soc. Agric. Eng. St. Joseph, MI, (1979)
120.
go back to reference K. Hung, M. Toksoy, Design and analysis of green house solar system in agricultural production. Energy Agric. 2, 115–136 (1983) K. Hung, M. Toksoy, Design and analysis of green house solar system in agricultural production. Energy Agric. 2, 115–136 (1983)
121.
go back to reference T. Boulard, E. Razafinjohany, A. Baille, A. Jaffrin, B. Fabre, Performance of a greenhouse heating system with a phase change material. Agric. Forest Meteorol. 52, 303–318 (1990) T. Boulard, E. Razafinjohany, A. Baille, A. Jaffrin, B. Fabre, Performance of a greenhouse heating system with a phase change material. Agric. Forest Meteorol. 52, 303–318 (1990)
122.
go back to reference H.H. Ozturk, Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for greenhouse heating. Energy Convers. Manage. 46, 1523–1542 (2005) H.H. Ozturk, Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for greenhouse heating. Energy Convers. Manage. 46, 1523–1542 (2005)
123.
go back to reference H.H. Ozturk, A. Bascetincelik, Energy and exergy efficiency of a packed-bed heat storage unit for greenhouse heating. Biosyst. Eng. 86, 231–245 (2003) H.H. Ozturk, A. Bascetincelik, Energy and exergy efficiency of a packed-bed heat storage unit for greenhouse heating. Biosyst. Eng. 86, 231–245 (2003)
124.
go back to reference A.A. Ghoneim, S.A. Klein, J.A. Duffie, Analysis of collector-storage building walls using phase change materials. Sol. Energy 47, 237–242 (1991) A.A. Ghoneim, S.A. Klein, J.A. Duffie, Analysis of collector-storage building walls using phase change materials. Sol. Energy 47, 237–242 (1991)
125.
go back to reference S. Chandra, R. Kumar, S. Kaushik, S. Kaul, Thermal performance of a non A/C building with PCCM thermal storage wall. Energy Convers. Manage. 25, 15–20 (1985) S. Chandra, R. Kumar, S. Kaushik, S. Kaul, Thermal performance of a non A/C building with PCCM thermal storage wall. Energy Convers. Manage. 25, 15–20 (1985)
126.
go back to reference T.R. Knowles, Proportioning composites for efficient-TSWs. Sol. Energy 31, 319–326 (1983) T.R. Knowles, Proportioning composites for efficient-TSWs. Sol. Energy 31, 319–326 (1983)
127.
go back to reference V.V. Tyagi, D. Buddhi, PCM thermal storage in buildings: a state of art. Renew. Sustain. Energy Rev. 11, 1146–1166 (2007) V.V. Tyagi, D. Buddhi, PCM thermal storage in buildings: a state of art. Renew. Sustain. Energy Rev. 11, 1146–1166 (2007)
128.
go back to reference D. Feldman, M.A. Khan, D. Banu, Energy storage composite with an organic phase change material. Sol. Energy Mater. 18, 333–341 (1989) D. Feldman, M.A. Khan, D. Banu, Energy storage composite with an organic phase change material. Sol. Energy Mater. 18, 333–341 (1989)
129.
go back to reference D. Feldman, M. Shapiro, D. Banu, C.J. Fuks, Fatty acids and their mixtures as phase change materials for thermal energy storage. Sol. Energy Mater. 18, 201–216 (1989) D. Feldman, M. Shapiro, D. Banu, C.J. Fuks, Fatty acids and their mixtures as phase change materials for thermal energy storage. Sol. Energy Mater. 18, 201–216 (1989)
130.
go back to reference D. Feldman, D. Banu, D. Hawes, E. Ghanbari E, Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. Solar Energy Mater. 22, 231–242 (1991) D. Feldman, D. Banu, D. Hawes, E. Ghanbari E, Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. Solar Energy Mater. 22, 231–242 (1991)
131.
go back to reference D.W. Hawes, D. Feldman, D. Banu, Latent heat storage in building materials. Energy Build. 20, 77–86 (1993) D.W. Hawes, D. Feldman, D. Banu, Latent heat storage in building materials. Energy Build. 20, 77–86 (1993)
132.
go back to reference A.K. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman, Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Build. Environ. 32, 405–410 (1997) A.K. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman, Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Build. Environ. 32, 405–410 (1997)
133.
go back to reference D.A. Neeper, Solar buildings research: what are the best directions? Passive Sol. J. 3, 213–219 (1986) D.A. Neeper, Solar buildings research: what are the best directions? Passive Sol. J. 3, 213–219 (1986)
134.
go back to reference D.A. Neeper, Thermal dynamics of wallboard with latent heat storage. Sol. Energy 68, 393–403 (2000) D.A. Neeper, Thermal dynamics of wallboard with latent heat storage. Sol. Energy 68, 393–403 (2000)
135.
go back to reference T.K. Stovall, J.J. Tomlinson, What are the potential benefits of including latent heat storage in common wall board. J. Sol. Energy Eng. Trans. ASME 117, 318–325 (1995) T.K. Stovall, J.J. Tomlinson, What are the potential benefits of including latent heat storage in common wall board. J. Sol. Energy Eng. Trans. ASME 117, 318–325 (1995)
136.
go back to reference K. Peippo, P. Kauranen, P.D. Lund, A multi-component PCM wall optimized for passive solar heating. Energy Build. 17, 259–270 (1991) K. Peippo, P. Kauranen, P.D. Lund, A multi-component PCM wall optimized for passive solar heating. Energy Build. 17, 259–270 (1991)
137.
go back to reference D. Zhang, Z. Li, J. Zhou, K. Wu, Development of thermal energy storage concrete. Cement Concrete. Res. 34, 927–934 (2004) D. Zhang, Z. Li, J. Zhou, K. Wu, Development of thermal energy storage concrete. Cement Concrete. Res. 34, 927–934 (2004)
138.
go back to reference P. Schossig, H.M. Henning, S. Gschwander, T. Haussmann, Micro-encapsulated phase-change materials integrated into construction materials. Sol. Energy Mater. Solar Cells 89, 297–306 (2005) P. Schossig, H.M. Henning, S. Gschwander, T. Haussmann, Micro-encapsulated phase-change materials integrated into construction materials. Sol. Energy Mater. Solar Cells 89, 297–306 (2005)
139.
go back to reference A. Athienitis, Y. Chen, The effect of solar radiation on dynamic thermal performance of floor heating systems. Sol. Energy 69, 229–237 (2000) A. Athienitis, Y. Chen, The effect of solar radiation on dynamic thermal performance of floor heating systems. Sol. Energy 69, 229–237 (2000)
140.
go back to reference G. Bakos, Energy management method for auxiliary energy saving in a passive-solar-heated residence using low-cost off-peak electricity. Energy Build. 31, 237–241 (2003) G. Bakos, Energy management method for auxiliary energy saving in a passive-solar-heated residence using low-cost off-peak electricity. Energy Build. 31, 237–241 (2003)
141.
go back to reference K.P. Lin, Y.P. Zhang, X. Xu, H.F. Di, R. Yang, P.H. Qin, Modeling and simulation of under-floor electric heating system with shape stabilized PCM plates. Build. Environ. 39, 1427–1434 (2004) K.P. Lin, Y.P. Zhang, X. Xu, H.F. Di, R. Yang, P.H. Qin, Modeling and simulation of under-floor electric heating system with shape stabilized PCM plates. Build. Environ. 39, 1427–1434 (2004)
142.
go back to reference C. Benard, D. Gobin, M. Gutierrez, Experimental results of a latent heat solar roof used for breeding chickens. Sol. Energy 6, 347–354 (1981) C. Benard, D. Gobin, M. Gutierrez, Experimental results of a latent heat solar roof used for breeding chickens. Sol. Energy 6, 347–354 (1981)
143.
go back to reference J.M. Gutherz, M.E. Schiler, A passive solar heating system for the perimeter zone of office buildings. Energy Sources 13, 39–54 (1991) J.M. Gutherz, M.E. Schiler, A passive solar heating system for the perimeter zone of office buildings. Energy Sources 13, 39–54 (1991)
144.
go back to reference J.R. Turnpenny, D.W. Etheridge, D.A. Reay, Novel ventilation cooling system for reducing air conditioning in buildings, Part I. Testing and theoretical modeling. Appl. Therm. Eng. 20, 1019–1037 (2000) J.R. Turnpenny, D.W. Etheridge, D.A. Reay, Novel ventilation cooling system for reducing air conditioning in buildings, Part I. Testing and theoretical modeling. Appl. Therm. Eng. 20, 1019–1037 (2000)
145.
go back to reference J.R. Turnpenny, D.W. Etheridge, D.A. Reay, Novel ventilation cooling system for reducing air conditioning in buildings, Part II. Testing of prototype. Appl. Therm. Eng. 21, 1203–1217 (2001) J.R. Turnpenny, D.W. Etheridge, D.A. Reay, Novel ventilation cooling system for reducing air conditioning in buildings, Part II. Testing of prototype. Appl. Therm. Eng. 21, 1203–1217 (2001)
146.
go back to reference M.M. Farid, M.H. Rafah, An electrical storage heater using the phase change method of heat storage. Energy Convers. Manage. 30, 219–230 (1990) M.M. Farid, M.H. Rafah, An electrical storage heater using the phase change method of heat storage. Energy Convers. Manage. 30, 219–230 (1990)
147.
go back to reference M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications. Energy Convers. Manage. 45, 1597–1615 (2004) M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications. Energy Convers. Manage. 45, 1597–1615 (2004)
148.
go back to reference B. Zalba, J.M. Marin, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251–283 (2003) B. Zalba, J.M. Marin, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251–283 (2003)
149.
go back to reference A. Shukla, D. Buddhi, R.L. Sawhney, Solar water heaters with phase change material thermal energy storage medium: a review. Renew. Sustain. Energy Rev. 13, 2119–2125 (2009) A. Shukla, D. Buddhi, R.L. Sawhney, Solar water heaters with phase change material thermal energy storage medium: a review. Renew. Sustain. Energy Rev. 13, 2119–2125 (2009)
150.
go back to reference M. Medrano, A. Gil, I. Martorell, X. Potau, L.F. Cabeza, State of the art on high-temperature thermal energy storage for power generation. Part 2—case studies. Renew. Sustain. Energy Rev. 14, 56–72 (2010) M. Medrano, A. Gil, I. Martorell, X. Potau, L.F. Cabeza, State of the art on high-temperature thermal energy storage for power generation. Part 2—case studies. Renew. Sustain. Energy Rev. 14, 56–72 (2010)
151.
go back to reference N. Gokon, D. Nakano, S. Inuta, T. Kodama, High-temperature carbonate/MgO composite materials as thermal storage media for double-walled solar reformer tubes. Sol. Energy 82, 1145–1153 (2008) N. Gokon, D. Nakano, S. Inuta, T. Kodama, High-temperature carbonate/MgO composite materials as thermal storage media for double-walled solar reformer tubes. Sol. Energy 82, 1145–1153 (2008)
152.
go back to reference M.F. Demirbas, Thermal energy storage and phase change materials: an overview. Energy Sources Part B 1, 85–95 (2006) M.F. Demirbas, Thermal energy storage and phase change materials: an overview. Energy Sources Part B 1, 85–95 (2006)
153.
go back to reference S. Jegadheeswaran, S.D. Pohekar, Performance enhancement in latent heat thermal storage system: a review. Renew. Sust. Energy Rev. 13, 2225–2244 (2009) S. Jegadheeswaran, S.D. Pohekar, Performance enhancement in latent heat thermal storage system: a review. Renew. Sust. Energy Rev. 13, 2225–2244 (2009)
154.
go back to reference R. Domanski, G. Fellah, Exergy analysis for the evaluation of a thermal storage system employing PCMs with different melting temperatures. Appl. Therm. Eng. 16, 907–919 (1996) R. Domanski, G. Fellah, Exergy analysis for the evaluation of a thermal storage system employing PCMs with different melting temperatures. Appl. Therm. Eng. 16, 907–919 (1996)
155.
go back to reference Z.X. Gong, A.S. Mujumdar, Finite element analysis of a multistage latent heat thermal storage system. Numer. Heat Transf. Part A 30, 669–684 (1996) Z.X. Gong, A.S. Mujumdar, Finite element analysis of a multistage latent heat thermal storage system. Numer. Heat Transf. Part A 30, 669–684 (1996)
156.
go back to reference P. Lamberg, R. Lehtiniemi, A.M. Henell, Numerical and experimental investigation of melting and freezing processes in phase change material storage. Int. J. Therm. Sci. 43, 277–287 (2004) P. Lamberg, R. Lehtiniemi, A.M. Henell, Numerical and experimental investigation of melting and freezing processes in phase change material storage. Int. J. Therm. Sci. 43, 277–287 (2004)
157.
go back to reference U. Stritih, An experimental study of enhanced heat transfer in rectangular PCM storage. Int. J. Heat Mass Transf. 47, 2841–2847 (2004) U. Stritih, An experimental study of enhanced heat transfer in rectangular PCM storage. Int. J. Heat Mass Transf. 47, 2841–2847 (2004)
158.
go back to reference Y. Zhang, Z. Chen, Q. Wang, Q. Wu, Melting in an enclosure with discrete heating at a constant rate. Exp. Therm. Fluid Sci. 6, 196–201 (1993) Y. Zhang, Z. Chen, Q. Wang, Q. Wu, Melting in an enclosure with discrete heating at a constant rate. Exp. Therm. Fluid Sci. 6, 196–201 (1993)
159.
go back to reference Y. Jellouli, R. Chouikh, A. Guizani, A. Belghith, Numerical study of the moving boundary problem during melting process in a rectangular cavity heated from below. Am. J. Appl. Sci. 4, 251–256 (2007) Y. Jellouli, R. Chouikh, A. Guizani, A. Belghith, Numerical study of the moving boundary problem during melting process in a rectangular cavity heated from below. Am. J. Appl. Sci. 4, 251–256 (2007)
160.
go back to reference K.W. Ng, Z.X. Gong, A.S. Mujumdar, Heat transfer in free convection-dominated melting of a phase change material in a horizontal annulus. Int. Commun. Heat Mass Transf. 25, 631–640 (1998) K.W. Ng, Z.X. Gong, A.S. Mujumdar, Heat transfer in free convection-dominated melting of a phase change material in a horizontal annulus. Int. Commun. Heat Mass Transf. 25, 631–640 (1998)
161.
go back to reference A.F. Regin, S.C. Solanki, J.S. Saini, Latent heat thermal storage using cylindrical capsule: numerical and experimental investigations. Renew. Energy 31, 2025–2041 (2006) A.F. Regin, S.C. Solanki, J.S. Saini, Latent heat thermal storage using cylindrical capsule: numerical and experimental investigations. Renew. Energy 31, 2025–2041 (2006)
162.
go back to reference B.J. Jones, D. Sun, S. Krishnan, S.V. Garimella, Experimental and numerical investigation of melting in a cylinder. Int. J. Heat. Mass. Transf. 49, 2724–2738 (2006) B.J. Jones, D. Sun, S. Krishnan, S.V. Garimella, Experimental and numerical investigation of melting in a cylinder. Int. J. Heat. Mass. Transf. 49, 2724–2738 (2006)
163.
go back to reference P.A. Bahrami, Natural melting within a spherical shell. NASA Technical Memorandum (Ames Research Center, California, 1990) Report No. 102822 P.A. Bahrami, Natural melting within a spherical shell. NASA Technical Memorandum (Ames Research Center, California, 1990) Report No. 102822
164.
go back to reference F.L. Tan, Constrained and unconstrained melting inside a sphere. Int. Commun. Heat Mass Transf. 35, 466–475 (2008) F.L. Tan, Constrained and unconstrained melting inside a sphere. Int. Commun. Heat Mass Transf. 35, 466–475 (2008)
165.
go back to reference H. Ettouney, H. El-Dessouky H, A. Al-Ali, Heat transfer during phase change of paraffin wax stored in spherical shells. J. Solar Energy Eng. Trans. ASME 127, 357–365 (2005) H. Ettouney, H. El-Dessouky H, A. Al-Ali, Heat transfer during phase change of paraffin wax stored in spherical shells. J. Solar Energy Eng. Trans. ASME 127, 357–365 (2005)
166.
go back to reference M. Lacroix, M. Benmadda, Analysis of natural convection melting from a heated wall with vertically oriented fins. Int. J. Numer. Methods Heat Fluid Flow 8, 465–478 (1998)MATH M. Lacroix, M. Benmadda, Analysis of natural convection melting from a heated wall with vertically oriented fins. Int. J. Numer. Methods Heat Fluid Flow 8, 465–478 (1998)MATH
167.
go back to reference H. Ettouney, H. El-Dessouky, E. Al-Kandari, Heat transfer characteristics during melting and solidification of phase change energy storage process. Ind. Eng. Chem. Res. 43, 5350–5357 (2004) H. Ettouney, H. El-Dessouky, E. Al-Kandari, Heat transfer characteristics during melting and solidification of phase change energy storage process. Ind. Eng. Chem. Res. 43, 5350–5357 (2004)
168.
go back to reference M. Pinelli, S. Piva, Solid/liquid phase change in presence of natural convection: a thermal energy storage case study. ASME J. Energy Res. Techn. 125, 190–197 (2003) M. Pinelli, S. Piva, Solid/liquid phase change in presence of natural convection: a thermal energy storage case study. ASME J. Energy Res. Techn. 125, 190–197 (2003)
169.
go back to reference M. Pinelli, G. Casano, S. Piva, Solid-liquid phase change heat transfer in a vertical cylinder heated from above. Int. J. Heat Techn. 18, 61–67 (2000)MATH M. Pinelli, G. Casano, S. Piva, Solid-liquid phase change heat transfer in a vertical cylinder heated from above. Int. J. Heat Techn. 18, 61–67 (2000)MATH
170.
go back to reference R. Akhilesh, C. Balaji, A. Narasimhan, Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. Int. J. Heat Mass Transf. 48, 2759–2770 (2005)MATH R. Akhilesh, C. Balaji, A. Narasimhan, Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. Int. J. Heat Mass Transf. 48, 2759–2770 (2005)MATH
171.
go back to reference M. Akhilesh, I. Sezai, Enhancement of heat transfer in latent heat storage modules with internal fins. Numer. Heat Transf. Part A 53, 749–765 (2008) M. Akhilesh, I. Sezai, Enhancement of heat transfer in latent heat storage modules with internal fins. Numer. Heat Transf. Part A 53, 749–765 (2008)
172.
go back to reference M. Lacroix, M. Benmadda, Numerical simulation of natural convection-dominated melting and solidification from a finned vertical wall. Numer. Heat Transf. Part A 31, 71–86 (1997) M. Lacroix, M. Benmadda, Numerical simulation of natural convection-dominated melting and solidification from a finned vertical wall. Numer. Heat Transf. Part A 31, 71–86 (1997)
173.
go back to reference V. Shatikian, G. Ziskind, R. Letan, Numerical investigation of a PCM-based heat sink with internal fins. Int. J. Heat Mass Transf. 48, 3689–3706 (2005)MATH V. Shatikian, G. Ziskind, R. Letan, Numerical investigation of a PCM-based heat sink with internal fins. Int. J. Heat Mass Transf. 48, 3689–3706 (2005)MATH
174.
go back to reference Y. Zhang, A. Faghri, Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube. J. Enhanc. Heat Transf. 3, 119–127 (1996) Y. Zhang, A. Faghri, Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube. J. Enhanc. Heat Transf. 3, 119–127 (1996)
175.
go back to reference R.V. Seeniraj, R. Velraj, N.L. Narasimhan, Thermal analysis of a finned-tube LHTS module for a solar dynamic power system. Heat Mass Transf. 38, 409–417 (200) R.V. Seeniraj, R. Velraj, N.L. Narasimhan, Thermal analysis of a finned-tube LHTS module for a solar dynamic power system. Heat Mass Transf. 38, 409–417 (200)
176.
go back to reference P. Lamberg, Approximate analytical model for two-phase solidification problem in a finned phase-change material storage. Appl. Energy 77, 131–152 (2004) P. Lamberg, Approximate analytical model for two-phase solidification problem in a finned phase-change material storage. Appl. Energy 77, 131–152 (2004)
177.
go back to reference J.C. Choi, S.D. Kim, Heat-transfer characteristics of a latent heat storage system using MgCl2 · 6H2O. Energy 17, 1153–1164 (1992) J.C. Choi, S.D. Kim, Heat-transfer characteristics of a latent heat storage system using MgCl2 · 6H2O. Energy 17, 1153–1164 (1992)
178.
go back to reference Z. Liu, X. Sun, C. Ma, Experimental study of the characteristics of solidification of stearic acid in an annulus and its thermal conductivity enhancement. Energy Convers. Manage. 46, 971–984 (2005) Z. Liu, X. Sun, C. Ma, Experimental study of the characteristics of solidification of stearic acid in an annulus and its thermal conductivity enhancement. Energy Convers. Manage. 46, 971–984 (2005)
179.
go back to reference R. Velraj, R.V. Seeniraj, H. Hafner, C. Faber, K. Schwarzer, Experimental analysis and numerical modeling of inward solidification on a finned vertical tube for a latent heat storage unit. Sol. Energy 60, 281–290 (1997) R. Velraj, R.V. Seeniraj, H. Hafner, C. Faber, K. Schwarzer, Experimental analysis and numerical modeling of inward solidification on a finned vertical tube for a latent heat storage unit. Sol. Energy 60, 281–290 (1997)
180.
go back to reference A. Castell, C. Sole, M. Medrano, J. Roca, L.F. Cabeza, D. Garcia, Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Appl. Therm. Eng. 28, 1676–1686 (2008) A. Castell, C. Sole, M. Medrano, J. Roca, L.F. Cabeza, D. Garcia, Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Appl. Therm. Eng. 28, 1676–1686 (2008)
181.
go back to reference J. Wang, G. Chen, H. Jiang, Theoretical study on a novel phase change process. Int. J. Energy Res. 23, 287–294 (1999) J. Wang, G. Chen, H. Jiang, Theoretical study on a novel phase change process. Int. J. Energy Res. 23, 287–294 (1999)
182.
go back to reference M.M. Farid, A. Kanzawa, Thermal performance of a heat storage module using PCMs with different melting temperatures: mathematical modeling. J. Sol. Energy Eng. Trnas. ASME 111, 152–157 (1989) M.M. Farid, A. Kanzawa, Thermal performance of a heat storage module using PCMs with different melting temperatures: mathematical modeling. J. Sol. Energy Eng. Trnas. ASME 111, 152–157 (1989)
183.
go back to reference R. Velraj, R.V. Seeniraj, B. Hafner, C. Faber, K. Schwarzer, Heat transfer enhancement in a latent heat storage system. Sol. Energy 65, 171–180 (1999) R. Velraj, R.V. Seeniraj, B. Hafner, C. Faber, K. Schwarzer, Heat transfer enhancement in a latent heat storage system. Sol. Energy 65, 171–180 (1999)
184.
go back to reference J. Wang, Y. Ouyang, Chen G, Experimental study on charging processes of a cylindrical heat storage capsule employingmultiple-phase-changematerials. Int. J. Energy Res. 25, 439–447 (2001) J. Wang, Y. Ouyang, Chen G, Experimental study on charging processes of a cylindrical heat storage capsule employingmultiple-phase-changematerials. Int. J. Energy Res. 25, 439–447 (2001)
185.
go back to reference J. Wang, G. Chen, F. Zheng, Study on phase change temperature distributions of composite PCMs in thermal energy storage systems. Int. J. Energy Res. 23, 277–285 (1999) J. Wang, G. Chen, F. Zheng, Study on phase change temperature distributions of composite PCMs in thermal energy storage systems. Int. J. Energy Res. 23, 277–285 (1999)
186.
go back to reference R.V. Seeniraj, N.L. Narasimhan, Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol. Energy 82, 535–542 (2008) R.V. Seeniraj, N.L. Narasimhan, Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol. Energy 82, 535–542 (2008)
187.
go back to reference M. Fang, G. Chen, Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl. Therm. Eng. 27, 994–1000 (2007) M. Fang, G. Chen, Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl. Therm. Eng. 27, 994–1000 (2007)
188.
go back to reference S.D. Sharma, K. Sagara, Latent heat storage materials and systems: a review. Int. J. Green Energy 2, 1–56 (2005) S.D. Sharma, K. Sagara, Latent heat storage materials and systems: a review. Int. J. Green Energy 2, 1–56 (2005)
189.
go back to reference O. Mesalhy, K. Lafdi, A. Elgafi, K. Bowman, Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porousmatrix. Energy Convers. Manage. 46, 847–867 (2005) O. Mesalhy, K. Lafdi, A. Elgafi, K. Bowman, Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porousmatrix. Energy Convers. Manage. 46, 847–867 (2005)
190.
go back to reference S. Krishnan, J.Y. Murthy, S.V. Garimella, A two-temperature model for solidliquid phase change in metal foams. ASME J. Heat Transf. 127, 995–1004 (2005) S. Krishnan, J.Y. Murthy, S.V. Garimella, A two-temperature model for solidliquid phase change in metal foams. ASME J. Heat Transf. 127, 995–1004 (2005)
191.
go back to reference D. Haillot, X. Py, V. Goetz, M. Benabdelkarim, Storage composites for the optimization of solar water heating systems. Chem. Eng. Res. Design 86, 612–617 (2008) D. Haillot, X. Py, V. Goetz, M. Benabdelkarim, Storage composites for the optimization of solar water heating systems. Chem. Eng. Res. Design 86, 612–617 (2008)
192.
go back to reference A. Sari, A. Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl. Therm. Eng. 27, 1271–1277 (2007) A. Sari, A. Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl. Therm. Eng. 27, 1271–1277 (2007)
193.
go back to reference H. Yin, X. Gao, J. Ding, Z. Zhang, Experimental research on heat transfer mechanism of heat sink with composite phase change materials. Energy Convers. Manage. 49, 1740–1746 (2008) H. Yin, X. Gao, J. Ding, Z. Zhang, Experimental research on heat transfer mechanism of heat sink with composite phase change materials. Energy Convers. Manage. 49, 1740–1746 (2008)
194.
go back to reference S. Kim, L.T. Drzal, High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol. Energy Mater. Sol. Cells 93, 136–142 (2009) S. Kim, L.T. Drzal, High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol. Energy Mater. Sol. Cells 93, 136–142 (2009)
195.
go back to reference S. Pincemin, X. Py, R. Olives, M. Christ, O. Oettinger, Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar power plant. J. Sol. Energy Eng. Trans. ASME 130, 11005–11009 (2008) S. Pincemin, X. Py, R. Olives, M. Christ, O. Oettinger, Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar power plant. J. Sol. Energy Eng. Trans. ASME 130, 11005–11009 (2008)
196.
go back to reference S. Pincemin, R. Olives, X. Py, M. Christ, Highly conductive composites made of phase change materials and graphite for thermal storage. Sol. Energy Mater. Sol. Cells 92, 603–613 (2008) S. Pincemin, R. Olives, X. Py, M. Christ, Highly conductive composites made of phase change materials and graphite for thermal storage. Sol. Energy Mater. Sol. Cells 92, 603–613 (2008)
197.
go back to reference A. Elgafy, K. Lafdi, Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon 43, 3067–3074 (2005) A. Elgafy, K. Lafdi, Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon 43, 3067–3074 (2005)
198.
go back to reference E.S. Mettawee, G.M.R. Assassa, Thermal conductivity enhancement in a latent heat storage system. Sol. Energy 81, 839–845 (2007) E.S. Mettawee, G.M.R. Assassa, Thermal conductivity enhancement in a latent heat storage system. Sol. Energy 81, 839–845 (2007)
199.
go back to reference J.M. Khodadadi, S.F. Hosseinizadeh, Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int. Commun. Heat Mass Transf. 34, 534–543 (2007) J.M. Khodadadi, S.F. Hosseinizadeh, Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int. Commun. Heat Mass Transf. 34, 534–543 (2007)
200.
go back to reference J.L. Zeng, L.X. Sun, F. Xu, Z.C. Tan, Z.H. Zhang, J. Zhang, T. Zhang, Study of a PCM based energy storage system containing Ag nanoparticles. J. Therm. Anal. Calorim. 87, 369–373 (2007) J.L. Zeng, L.X. Sun, F. Xu, Z.C. Tan, Z.H. Zhang, J. Zhang, T. Zhang, Study of a PCM based energy storage system containing Ag nanoparticles. J. Therm. Anal. Calorim. 87, 369–373 (2007)
201.
go back to reference R.V. Seeniraj, R. Velraj, N.L. Narasimhan, Heat transfer enhancement study of a LHTS unit containing dispersed high conductivity particles. J. Sol. Energy Eng. Trans. ASME 124, 243–249 (2002) R.V. Seeniraj, R. Velraj, N.L. Narasimhan, Heat transfer enhancement study of a LHTS unit containing dispersed high conductivity particles. J. Sol. Energy Eng. Trans. ASME 124, 243–249 (2002)
202.
go back to reference H. Ettouney, I. Alatiqi, M. Al-Sahali, S.A. Al-Ali, Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems. Renew. Energy 29, 841–860 (2004) H. Ettouney, I. Alatiqi, M. Al-Sahali, S.A. Al-Ali, Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems. Renew. Energy 29, 841–860 (2004)
203.
go back to reference H. Ettouney, I. Alatiqi, M. Al-Sahali, K. Al-Hajirie, Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and beads. Energy Convers. Manage. 47, 211–228 (2006) H. Ettouney, I. Alatiqi, M. Al-Sahali, K. Al-Hajirie, Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and beads. Energy Convers. Manage. 47, 211–228 (2006)
204.
go back to reference J. Fukai, M. Kanou, Y. Kodama, O. Miyatake, Thermal conductivity enhancement of energy storage media using carbon fibers. Energy Convers. Manage. 41, 1543–1556 (2000) J. Fukai, M. Kanou, Y. Kodama, O. Miyatake, Thermal conductivity enhancement of energy storage media using carbon fibers. Energy Convers. Manage. 41, 1543–1556 (2000)
205.
go back to reference J. Fukai, Y. Hamada, Y. Morozumi, O. Miyatake, Improvement of thermal characteristics of latent heat thermal energy storage units using carbonfiber brushes: experiments and modeling. Int. J. Mass Heat Transf. 46, 4513–4525 (2003) J. Fukai, Y. Hamada, Y. Morozumi, O. Miyatake, Improvement of thermal characteristics of latent heat thermal energy storage units using carbonfiber brushes: experiments and modeling. Int. J. Mass Heat Transf. 46, 4513–4525 (2003)
206.
go back to reference Y. Hamada, W. Ohtsu, J. Fukai, Thermal response in thermal energy storage material around heat transfer tubes: effect of additives on heat transfer rates. Sol. Energy 75, 317–328 (2003) Y. Hamada, W. Ohtsu, J. Fukai, Thermal response in thermal energy storage material around heat transfer tubes: effect of additives on heat transfer rates. Sol. Energy 75, 317–328 (2003)
207.
go back to reference J. Fukai, Y. Hamada, Y. Morozumi, O. Miyatake, Effect of carbon-fiber brushes on conductive heat transfer in phase change materials. Int. J. Mass Heat Transf. 45, 4781–4792 (2002) J. Fukai, Y. Hamada, Y. Morozumi, O. Miyatake, Effect of carbon-fiber brushes on conductive heat transfer in phase change materials. Int. J. Mass Heat Transf. 45, 4781–4792 (2002)
208.
go back to reference Y. Hamada, W. Otsu, J. Fukai J, Y. Morozumi, O. Miyatake, Anisotropic heat transfer in composites based on high-thermal conductive carbon fibers. Energy 30, 221–233 (2005) Y. Hamada, W. Otsu, J. Fukai J, Y. Morozumi, O. Miyatake, Anisotropic heat transfer in composites based on high-thermal conductive carbon fibers. Energy 30, 221–233 (2005)
209.
go back to reference K. Nakaso, H. Teshima, A. Yoshimura, S. Nogami, Y. Hamada, J. Fukai, Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks. Chem Eng Process. 47, 879–885 (2008) K. Nakaso, H. Teshima, A. Yoshimura, S. Nogami, Y. Hamada, J. Fukai, Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks. Chem Eng Process. 47, 879–885 (2008)
210.
go back to reference Y. Cui, C. Liu, S. Hu, X. Yu, The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol. Energy Mater. Sol. Cells 95, 1208–1212 (2011) Y. Cui, C. Liu, S. Hu, X. Yu, The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol. Energy Mater. Sol. Cells 95, 1208–1212 (2011)
211.
go back to reference J. Wang, H. Xie, Z. Xin, Y. Li, L. Chen, Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol. Energy 84, 339–344 (2010) J. Wang, H. Xie, Z. Xin, Y. Li, L. Chen, Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol. Energy 84, 339–344 (2010)
212.
go back to reference J. Wang, H. Xie, Z. Xin, Y. Li, L. Chen, Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim. Acta 488, 39–42 (2009) J. Wang, H. Xie, Z. Xin, Y. Li, L. Chen, Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim. Acta 488, 39–42 (2009)
213.
go back to reference J. Wang, H. Xie, Z. Xin, Y. Li, Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes. Carbon 48, 3979–3986 (2010) J. Wang, H. Xie, Z. Xin, Y. Li, Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes. Carbon 48, 3979–3986 (2010)
214.
go back to reference L.W. Fan, X. Fang, X. Wang, Y. Zeng, Y. Q. Xiao, Z.T. Yu, X. Xu, Y.C. Hu, K.F. Cen, Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl. Energy, 110, 163–172 (2013) L.W. Fan, X. Fang, X. Wang, Y. Zeng, Y. Q. Xiao, Z.T. Yu, X. Xu, Y.C. Hu, K.F. Cen, Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl. Energy, 110, 163–172 (2013)
215.
go back to reference Y. Hamada, J. Fukai, Latent heat thermal energy storage tanks for space heating of buildings: comparison between calculations and experiments. Energy Convers. Manage. 46, 3221–3235 (2005) Y. Hamada, J. Fukai, Latent heat thermal energy storage tanks for space heating of buildings: comparison between calculations and experiments. Energy Convers. Manage. 46, 3221–3235 (2005)
216.
go back to reference M.N.A. Hawlader, M.S. Uddin, M.M. Khin, Microencapsulated PCM thermal energy storage system. Appl. Energy 74, 195–202 (2003) M.N.A. Hawlader, M.S. Uddin, M.M. Khin, Microencapsulated PCM thermal energy storage system. Appl. Energy 74, 195–202 (2003)
217.
go back to reference B. Chen, X. Wang, R. Zeng, Y. Zhang, X. Wang, J. Niu, Y. Li, H. Di, An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux. Exper. Therm. Fluid Sci. 32, 1638–1646 (2008) B. Chen, X. Wang, R. Zeng, Y. Zhang, X. Wang, J. Niu, Y. Li, H. Di, An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux. Exper. Therm. Fluid Sci. 32, 1638–1646 (2008)
218.
go back to reference C. Alkan, A. Sari, A. Karaipekli, O. Uzun, Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 93, 143–147 (2009) C. Alkan, A. Sari, A. Karaipekli, O. Uzun, Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 93, 143–147 (2009)
219.
go back to reference M.N.A. Hawlader, M.S. Uddin, H.J. Zhu, Encapsulated phase change materials for thermal energy storage: Experiments and simulation. Int. J. Energy Res. 26, 159–171 (2002) M.N.A. Hawlader, M.S. Uddin, H.J. Zhu, Encapsulated phase change materials for thermal energy storage: Experiments and simulation. Int. J. Energy Res. 26, 159–171 (2002)
220.
go back to reference L.F. Cabeza, C. Castellon, M. Nogues, M. Medrano, R. Leppers, O. Zubillaga, Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 39, 113–119 (2007) L.F. Cabeza, C. Castellon, M. Nogues, M. Medrano, R. Leppers, O. Zubillaga, Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 39, 113–119 (2007)
221.
go back to reference L. Sanchez, P. Sanchez, A. Lucas, M. Carmona, J.F. Rodriguez, Microencapsulation of PCMs with a polystyrene shell. Colloid. Polymer Sci. 285, 1377–1385 (2007) L. Sanchez, P. Sanchez, A. Lucas, M. Carmona, J.F. Rodriguez, Microencapsulation of PCMs with a polystyrene shell. Colloid. Polymer Sci. 285, 1377–1385 (2007)
222.
go back to reference Y. Rao, F. Dammel, P. Stephen, G. Lin, Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels. Heat Mass Transf. 44, 175–186 (2007) Y. Rao, F. Dammel, P. Stephen, G. Lin, Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels. Heat Mass Transf. 44, 175–186 (2007)
223.
go back to reference Y. Zhang, A. Faghri, Analysis of forced convection heat transfer in microencapsulated phase change material suspensions. J. Thermophys. Heat Transf. 9, 727–732 (1995) Y. Zhang, A. Faghri, Analysis of forced convection heat transfer in microencapsulated phase change material suspensions. J. Thermophys. Heat Transf. 9, 727–732 (1995)
224.
go back to reference M.N.A. Hawlader, M.S. Uddin, H.J. Zhu, Preparation and evaluation of a novel solar storage material: microencapsulated paraffin. Int. J. Sol. Energy 20, 227–238 (2000) M.N.A. Hawlader, M.S. Uddin, H.J. Zhu, Preparation and evaluation of a novel solar storage material: microencapsulated paraffin. Int. J. Sol. Energy 20, 227–238 (2000)
225.
go back to reference Y. Ozonur, M. Mazman, H.O. Paksoy, H. Evliya, Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. Int. J. Energy Res. 30, 741–749 (2006) Y. Ozonur, M. Mazman, H.O. Paksoy, H. Evliya, Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. Int. J. Energy Res. 30, 741–749 (2006)
226.
go back to reference A.F. Regin, S.C. Solanki, J.S. Saini, Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew. Sustain. Energy Rev. 12, 2438–2458 (2008) A.F. Regin, S.C. Solanki, J.S. Saini, Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew. Sustain. Energy Rev. 12, 2438–2458 (2008)
227.
go back to reference Y. Fang, S. Kuang, X. Gao, Z. Zhang, Preparation and characterization of novel nanoencapsulated phase change materials. Energy Convers. Manage. 49, 3704–3707 (2008) Y. Fang, S. Kuang, X. Gao, Z. Zhang, Preparation and characterization of novel nanoencapsulated phase change materials. Energy Convers. Manage. 49, 3704–3707 (2008)
228.
go back to reference Z.H. Chen, F. Yu, X.R. Zeng, Z.G. Zhang, Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier. Appl. Energy 91, 7–12 (2012) Z.H. Chen, F. Yu, X.R. Zeng, Z.G. Zhang, Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier. Appl. Energy 91, 7–12 (2012)
229.
go back to reference G. Fang, H. Li, F. Yang, X. Liu, S. Wu, Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem. Eng. J. 153, 217–221 (2009) G. Fang, H. Li, F. Yang, X. Liu, S. Wu, Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem. Eng. J. 153, 217–221 (2009)
230.
go back to reference A. Michel, A. Kugi, Accurate low-order dynamic model of a compact plate heat exchanger. Int. J. Heat and Mass Transf. 61, 323–331 (2013) A. Michel, A. Kugi, Accurate low-order dynamic model of a compact plate heat exchanger. Int. J. Heat and Mass Transf. 61, 323–331 (2013)
231.
go back to reference A. Abhat, Performance studies of a finned heat pipe latent heat thermal energy storage system, in Sun (Pergamon Press, NY, 1981) pp. 541–546 A. Abhat, Performance studies of a finned heat pipe latent heat thermal energy storage system, in Sun (Pergamon Press, NY, 1981) pp. 541–546
232.
go back to reference C.D. Maccracken, PCM bulk storage, in Proceedings of the international conference on energy storage, pp. 159–165 (1981) C.D. Maccracken, PCM bulk storage, in Proceedings of the international conference on energy storage, pp. 159–165 (1981)
233.
go back to reference R.N. Smith, T.E. Ebersole, F.P. Griffin, Heat-exchanger performance in latent-heat thermal-heat thermal-energy storage. J. Sol. Energy Eng. Trans. ASME 102, 112–118 (1980) R.N. Smith, T.E. Ebersole, F.P. Griffin, Heat-exchanger performance in latent-heat thermal-heat thermal-energy storage. J. Sol. Energy Eng. Trans. ASME 102, 112–118 (1980)
234.
go back to reference D. Buddhi, Thermal performance of a shell and tube PCM storage heat exchanger for industrial waste heat recovery, in Solar World Congress, Taejon, Korea, Aug 24–30 (1977) D. Buddhi, Thermal performance of a shell and tube PCM storage heat exchanger for industrial waste heat recovery, in Solar World Congress, Taejon, Korea, Aug 24–30 (1977)
235.
go back to reference V.M. Morcos, Investigation of a latent heat thermal energy storage system. Solar Wind Techn. 7, 197–202 (1990) V.M. Morcos, Investigation of a latent heat thermal energy storage system. Solar Wind Techn. 7, 197–202 (1990)
236.
go back to reference M.J. Santamouris, C.C. Lefas, On the coupling of PCM stores to active solar systems. Int. J. Energy Res. 12, 603–610 (1988) M.J. Santamouris, C.C. Lefas, On the coupling of PCM stores to active solar systems. Int. J. Energy Res. 12, 603–610 (1988)
237.
go back to reference M.M. Farid, A. Kanzawa, Thermal performance of heat storage module using PCMs with different melting temperatures: mathematical modeling. J. Sol. Energy Eng. Trans. ASME 111, 152–157 (1989) M.M. Farid, A. Kanzawa, Thermal performance of heat storage module using PCMs with different melting temperatures: mathematical modeling. J. Sol. Energy Eng. Trans. ASME 111, 152–157 (1989)
238.
go back to reference D.R. Biswas, Thermal energy storage using sodium sulphate decahydrate and water. Sol. Energy 19, 99–100 (1977) D.R. Biswas, Thermal energy storage using sodium sulphate decahydrate and water. Sol. Energy 19, 99–100 (1977)
239.
go back to reference F.C. Porisini, Salt hydrates used for latent heat storage: corrosion of metals and reliability of thermal performance. Sol. Energy 41, 193–197 (1988) F.C. Porisini, Salt hydrates used for latent heat storage: corrosion of metals and reliability of thermal performance. Sol. Energy 41, 193–197 (1988)
240.
go back to reference L. Cabeza, J. Illa, J. Roca, F. Badia, H. Mehling, S. Hiebler, F. Ziegler, Immersion corrosion tests on melt-salt hydrate pairs used for latent heat storage in the 32–36 °C temperature range. Mater. Corrosion 52, 140–146 (2201) L. Cabeza, J. Illa, J. Roca, F. Badia, H. Mehling, S. Hiebler, F. Ziegler, Immersion corrosion tests on melt-salt hydrate pairs used for latent heat storage in the 32–36 °C temperature range. Mater. Corrosion 52, 140–146 (2201)
241.
go back to reference R.W. Bradshaw, S.H. Goods, Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts, SANDIA Report, SAND2001-8518 (2001) R.W. Bradshaw, S.H. Goods, Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts, SANDIA Report, SAND2001-8518 (2001)
242.
go back to reference R.W. Bradshaw, S.H. Goods, Corrosion of alloys and metals molten nitrates, SADIA Report, SAND2000-8727 (2000) R.W. Bradshaw, S.H. Goods, Corrosion of alloys and metals molten nitrates, SADIA Report, SAND2000-8727 (2000)
243.
go back to reference A. Baraka, A.I. Abdel-Rohman, A.A. El Hosary, Corrosion of mild steel in molten sodium nitrate-potassium nitrate eutectic. Brit. Corrosion J. 11, 44–46 (1976) A. Baraka, A.I. Abdel-Rohman, A.A. El Hosary, Corrosion of mild steel in molten sodium nitrate-potassium nitrate eutectic. Brit. Corrosion J. 11, 44–46 (1976)
244.
go back to reference I.B. Singh, U. Sen, Influence of temperature and sulphate ion on corrosion of mild steel in molten NaNO3. Brit. Corrosion J. 27, 299–304 (1992) I.B. Singh, U. Sen, Influence of temperature and sulphate ion on corrosion of mild steel in molten NaNO3. Brit. Corrosion J. 27, 299–304 (1992)
Metadata
Title
Waste Thermal Energy Harvesting (III): Storage with Phase Change Materials
Authors
Ling Bing Kong
Tao Li
Huey Hoon Hng
Freddy Boey
Tianshu Zhang
Sean Li
Copyright Year
2014
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-54634-1_6