Skip to main content
Top

2015 | OriginalPaper | Chapter

12. Wave Propagation in Auxetic Solids

Author : Teik-Cheng Lim

Published in: Auxetic Materials and Structures

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter on wave propagation forms the second part of the elastodynamics of auxetic solids. Special emphasis is placed on the effect of negative Poisson’s ratio towards the velocity of longitudinal waves in prismatic bars c 0, the velocity of plane waves of dilatation c 1, the velocities of plane waves of distortion and torsional waves c 2 and Rayleigh waves c 3. A set of dimensionless wave velocities is introduced to facilitate the plotting of non-dimensional wave velocity in both the auxetic and conventional regions. As an alternative way of non-dimensionalization, all wave velocities can be normalized against the wave velocity for plane wave of dilatation. It is herein shown that some of the velocities of different types of waves are equal at non-positive Poisson’s ratio, i.e. c 0 = c 1 at v = 0, c 0 = c 2 at v = −0.5 and c 0 = c 3 at v = −0.733. In the case of solitary waves in plates, Kołat et al. (J Non-Cryst Solids 356:2001–2009, 2010) showed that the amplitudes and velocities are approximately related to the magnitude of the Poisson’s ratio, while the width of the initial pulse is related to the number of propagating solitary pulses.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bergmann L (1948) Ultrasonics and their Scientific and Technical Applications. George Bell & Sons, London Bergmann L (1948) Ultrasonics and their Scientific and Technical Applications. George Bell & Sons, London
go back to reference Chen CP, Lakes RS (1989) Dynamic wave dispersion and loss properties of conventional and negative Poisson’s ratio polymer cellular materials. Cell Polym 8(5):343–369 Chen CP, Lakes RS (1989) Dynamic wave dispersion and loss properties of conventional and negative Poisson’s ratio polymer cellular materials. Cell Polym 8(5):343–369
go back to reference Dinh TB, Long VC, Xuan KD, Wojciechowski KW (2012) Computer simulation of solitary waves in a common or auxetic elastic rod with both quadratic and cubic nonlinearities. Phys Status Solidi B 249(7):1386–1392 Dinh TB, Long VC, Xuan KD, Wojciechowski KW (2012) Computer simulation of solitary waves in a common or auxetic elastic rod with both quadratic and cubic nonlinearities. Phys Status Solidi B 249(7):1386–1392
go back to reference Drzewiecki A (2012) Rayleigh-type wave propagation in an auxetic dielectric. J Mech Mater Struct 7(3):277–284CrossRef Drzewiecki A (2012) Rayleigh-type wave propagation in an auxetic dielectric. J Mech Mater Struct 7(3):277–284CrossRef
go back to reference Goldsteain RV, Goroddtsov VA, Lisovenko DS (2014) Rayleigh and love surface waves in isotropic media with negative Poisson’s ratio. Mech Solids 49(4):422–434CrossRef Goldsteain RV, Goroddtsov VA, Lisovenko DS (2014) Rayleigh and love surface waves in isotropic media with negative Poisson’s ratio. Mech Solids 49(4):422–434CrossRef
go back to reference Koenders MA (2009) Wave propagation through elastic granular and granular auxetic materials. Phys Status Solidi B 246(9):2083–2088CrossRef Koenders MA (2009) Wave propagation through elastic granular and granular auxetic materials. Phys Status Solidi B 246(9):2083–2088CrossRef
go back to reference Kołat P, Maruszewski BT, Wojciechowski KW (2010) Solitary waves in auxetic plates. J Non-Cryst Solids 356(37–40):2001–2009 Kołat P, Maruszewski BT, Wojciechowski KW (2010) Solitary waves in auxetic plates. J Non-Cryst Solids 356(37–40):2001–2009
go back to reference Kołat P, Maruszewski BT, Tretiakov KV, Wojciechowski KW (2011) Solitary waves in auxetic rods. Phys Status Solidi B 248(1):148–157CrossRef Kołat P, Maruszewski BT, Tretiakov KV, Wojciechowski KW (2011) Solitary waves in auxetic rods. Phys Status Solidi B 248(1):148–157CrossRef
go back to reference Lim TC, Cheang P, Scarpa F (2014) Wave motion in auxetic solids. Phys Status Solidi B 251(2):388–396CrossRef Lim TC, Cheang P, Scarpa F (2014) Wave motion in auxetic solids. Phys Status Solidi B 251(2):388–396CrossRef
go back to reference Lipsett W, Beltzer AI (1988) Reexamination of dynamic problems of elasticity for negative Poisson’s ratio. J Acoust Soc Am 84(6):2179–2186CrossRef Lipsett W, Beltzer AI (1988) Reexamination of dynamic problems of elasticity for negative Poisson’s ratio. J Acoust Soc Am 84(6):2179–2186CrossRef
go back to reference Malischewsky PG (2005) Comparison of approximated solutions for the phase velocity of Rayleigh waves (Comment on ‘Characterization of surface damage via surface acoustic waves’). Nanotechnol 16(6):995–996 Malischewsky PG (2005) Comparison of approximated solutions for the phase velocity of Rayleigh waves (Comment on ‘Characterization of surface damage via surface acoustic waves’). Nanotechnol 16(6):995–996
go back to reference Malischewski PG, Lorato A, Scarpa F, Ruzzene M (2012) Unusual behaviour of wave propagation in auxetic structures: P-waves on free surface and S-waves in chiral lattices with piezoelectrics. Phys Status Solidi B 249(7):1339–1346CrossRef Malischewski PG, Lorato A, Scarpa F, Ruzzene M (2012) Unusual behaviour of wave propagation in auxetic structures: P-waves on free surface and S-waves in chiral lattices with piezoelectrics. Phys Status Solidi B 249(7):1339–1346CrossRef
go back to reference Maruszewski B, Drzewiecki A, Starosta R (2010) Magnetoelastic surface waves in auxetic structure. In: IOP conference series: materials science and engineering, vol 10, p 012160 Maruszewski B, Drzewiecki A, Starosta R (2010) Magnetoelastic surface waves in auxetic structure. In: IOP conference series: materials science and engineering, vol 10, p 012160
go back to reference Porubov AV, Maugin GA, Mareev VV (2004) Localization of two-dimensional non-linear strain waves in a plate. Int J Non-Linear Mech 39(8):1359–1370CrossRefMATH Porubov AV, Maugin GA, Mareev VV (2004) Localization of two-dimensional non-linear strain waves in a plate. Int J Non-Linear Mech 39(8):1359–1370CrossRefMATH
go back to reference Remillat C, Wilcox P, Scarpa F (2008) Lamb wave propagation in negative Poisso’s ratio composites. Proceedings of SPIE 6935, 69350C Remillat C, Wilcox P, Scarpa F (2008) Lamb wave propagation in negative Poisso’s ratio composites. Proceedings of SPIE 6935, 69350C
go back to reference Ruzzene M, Scarpa F (2003) Control of wave propagation in sandwich beams with auxetic core. J Intell Mater Syst Struct 14(7):443–453CrossRef Ruzzene M, Scarpa F (2003) Control of wave propagation in sandwich beams with auxetic core. J Intell Mater Syst Struct 14(7):443–453CrossRef
go back to reference Ruzzene M, Mazzarella L, Tsopelas P, Scarpa F (2002) Wave propagation in sandwich plates with periodic auxetic core. J Intell Mater Syst Struct 13(9):587–597CrossRef Ruzzene M, Mazzarella L, Tsopelas P, Scarpa F (2002) Wave propagation in sandwich plates with periodic auxetic core. J Intell Mater Syst Struct 13(9):587–597CrossRef
go back to reference Scarpa F, Malischewsky PG (2008) Some new considerations concerning the Rayleigh-wave velocity in auxetic materials. Phys Status Solidi B 245(3):578–583CrossRef Scarpa F, Malischewsky PG (2008) Some new considerations concerning the Rayleigh-wave velocity in auxetic materials. Phys Status Solidi B 245(3):578–583CrossRef
go back to reference Scarpa F, Ouisse M, Collet M, Saito K (2013) Kirigami auxetic pyramidal core: mechanical properties and wave propagation analysis in damped lattice. ASME J Vib Acoust 135(4):041001CrossRef Scarpa F, Ouisse M, Collet M, Saito K (2013) Kirigami auxetic pyramidal core: mechanical properties and wave propagation analysis in damped lattice. ASME J Vib Acoust 135(4):041001CrossRef
go back to reference Scruby CB, Jones KR, Antoniazzi L (1986) Diffraction of elastic waves by defects in plates: Calculated arrival strengths for point force and thermodynamic sources of ultrasound. J Nondestruct Eval 5(3/4):145–156 Scruby CB, Jones KR, Antoniazzi L (1986) Diffraction of elastic waves by defects in plates: Calculated arrival strengths for point force and thermodynamic sources of ultrasound. J Nondestruct Eval 5(3/4):145–156
go back to reference Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, AucklandMATH Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, AucklandMATH
go back to reference Trzupek D, Zieliński P (2009) Isolated true surface wave in a radiative band on a surface of a stressed auxetic. Phys Rev Lett 103(7):075504CrossRef Trzupek D, Zieliński P (2009) Isolated true surface wave in a radiative band on a surface of a stressed auxetic. Phys Rev Lett 103(7):075504CrossRef
go back to reference Trzupek D, Twarog D, Zieliński P (2009) Stress induced phononic properties and surface waves in 2D model of auxetic crystal. Acta Physica Polonica 115(2):576–578 Trzupek D, Twarog D, Zieliński P (2009) Stress induced phononic properties and surface waves in 2D model of auxetic crystal. Acta Physica Polonica 115(2):576–578
go back to reference Vinh PC, Malischewsky PG (2007) An approach for obtaining approximate formulas for the Rayleigh wave velocity. Wave Motion 44(7):549–562CrossRefMATHMathSciNet Vinh PC, Malischewsky PG (2007) An approach for obtaining approximate formulas for the Rayleigh wave velocity. Wave Motion 44(7):549–562CrossRefMATHMathSciNet
go back to reference Vinh PC, Malischewsky PG (2008) Improved approximations for the Rayleigh wave velocity in [−1, 0.5]. Vietnam J Mech 30(4):347–358 Vinh PC, Malischewsky PG (2008) Improved approximations for the Rayleigh wave velocity in [−1, 0.5]. Vietnam J Mech 30(4):347–358
go back to reference Zieliński P, Twarog D, Trzupek D (2009) On surface waves in materials with negative Poisson’s ratio. Acta Physica Polonica 115(2):513–515 Zieliński P, Twarog D, Trzupek D (2009) On surface waves in materials with negative Poisson’s ratio. Acta Physica Polonica 115(2):513–515
Metadata
Title
Wave Propagation in Auxetic Solids
Author
Teik-Cheng Lim
Copyright Year
2015
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-275-3_12

Premium Partners