Skip to main content
Top

2017 | OriginalPaper | Chapter

13. Waveform Shaping Structures and Transmission Lines on CMOS

Authors : Yanjun Ma, Edwin Kan

Published in: Non-logic Devices in Logic Processes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Most of the CMOS mixed-signal circuits, including digital, analog, and RF applications, have layout sizes much smaller than the wavelength of design interest (or equivalently the operating frequency is much lower than the speed of light divided by the layout size), and are hence treated as lumped circuit elements or scattering blocks in conventional microwave circuits. These lumped circuits do not need to consider the coupling between the electric and magnetic fields governed by the Maxwell equations, but only the electrostatic Poisson equation with the displacement current would be sufficient. On the other hand, this chapter will introduce how to design distributive circuit structures in logic CMOS processes. Distributive circuits means the physical size of the component under consideration is comparable to the wavelength of interest, the electrostatic picture is insufficient, and the electromagnetic wave propagation needs to be considered for the module characteristics. As wave propagation is part of the design considerations, we will investigate the waveform shaping characteristics for these distributive modules, whether the shaping is a desirable feature or an unwanted distortion. As there are many excellent texts on the CMOS RF circuit modules such as on-chip inductors and resonators, we will focus only on distributive structures such as on-chip waveguides and transmission lines. We will then illustrate the design and characteristics of both semidiscrete and lumped-element transmission lines, together with varactor loading to make functionalities available in nonlinear transmission lines (NLTL). We will finally investigate the layout dependence of line folding and floating-metal isolation structures in practical waveguide and transmission line structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Afshari, E., & Hajimiri, A. (2005). Nonlinear transmission lines for pulse shaping in silicon. IEEE Journal of Solid-State Circuits, 40(3), 744–752.CrossRef Afshari, E., & Hajimiri, A. (2005). Nonlinear transmission lines for pulse shaping in silicon. IEEE Journal of Solid-State Circuits, 40(3), 744–752.CrossRef
go back to reference Banerjee, K. M., & Mehrotra, A. (2001). Global (interconnect) warming. IEEE Circuits and Devices Magazine, 17, 16–32.CrossRef Banerjee, K. M., & Mehrotra, A. (2001). Global (interconnect) warming. IEEE Circuits and Devices Magazine, 17, 16–32.CrossRef
go back to reference Bolic, M., Simplot-Ryl, D., & Stojmenvoic, I. (2010). RFID systems: Research trends and challenges. New York: Wiley.CrossRef Bolic, M., Simplot-Ryl, D., & Stojmenvoic, I. (2010). RFID systems: Research trends and challenges. New York: Wiley.CrossRef
go back to reference Celik, M., Pileggi, L., & Odabasioglu, A. (2002). IC interconnect analysis. New York: Kluwer Academic. Celik, M., Pileggi, L., & Odabasioglu, A. (2002). IC interconnect analysis. New York: Kluwer Academic.
go back to reference Chang, R. T., Yue, C. P., & Wong, S. S. (2002) Near speed-of-light on-chip electrical interconnect. In Technical Digests, VLSI Circuits Symposium, pp. 18–21. Chang, R. T., Yue, C. P., & Wong, S. S. (2002) Near speed-of-light on-chip electrical interconnect. In Technical Digests, VLSI Circuits Symposium, pp. 18–21.
go back to reference Cheng, C., Lillis, J., Lin, S., & Chang, N. (2000). Interconnect analysis and synthesis. New York: Wiley. Cheng, C., Lillis, J., Lin, S., & Chang, N. (2000). Interconnect analysis and synthesis. New York: Wiley.
go back to reference Cheung, T., & Long, J. (2006). Shielded passive devices for silicon based monolithic microwave and millimeter-wave integrated circuits. IEEE Journal of Solid-State Circuits, 41(5), 1183–1200.CrossRef Cheung, T., & Long, J. (2006). Shielded passive devices for silicon based monolithic microwave and millimeter-wave integrated circuits. IEEE Journal of Solid-State Circuits, 41(5), 1183–1200.CrossRef
go back to reference Cong, J. (2001). An interconnect-centric design flow for nanometer technologies. Proceedings of the IEEE, 89, 505–528.CrossRef Cong, J. (2001). An interconnect-centric design flow for nanometer technologies. Proceedings of the IEEE, 89, 505–528.CrossRef
go back to reference Davis, J. A., Venkatesan, R., Kaloyeros, A., Beylansky, M., Souri, S. J., Banerjee, K., et al. (2001). Interconnect limits on gigascale integration (GSI) in the 21st century. Proceedings of the IEEE, 89, 305–324.CrossRef Davis, J. A., Venkatesan, R., Kaloyeros, A., Beylansky, M., Souri, S. J., Banerjee, K., et al. (2001). Interconnect limits on gigascale integration (GSI) in the 21st century. Proceedings of the IEEE, 89, 305–324.CrossRef
go back to reference Devgan, A., Ji, H., & Dai, W. (2000). How to efficiently capture on_chip inductance effects: Introducing a new circuit element K. Presented at IEEE International Conference on Computer-Aided Design. Devgan, A., Ji, H., & Dai, W. (2000). How to efficiently capture on_chip inductance effects: Introducing a new circuit element K. Presented at IEEE International Conference on Computer-Aided Design.
go back to reference Elmore, W. C. (1948). The transient response of damped linear networks with particular regard to wideband amplifiers. Journal of Applied Physics, 19, 55–63.CrossRef Elmore, W. C. (1948). The transient response of damped linear networks with particular regard to wideband amplifiers. Journal of Applied Physics, 19, 55–63.CrossRef
go back to reference Hall, S. H., Hall, G. W., & McCall, J. A. (2000). High-speed digital system design, a handbook of interconnect theory and design practices. New York: Wiley. Hall, S. H., Hall, G. W., & McCall, J. A. (2000). High-speed digital system design, a handbook of interconnect theory and design practices. New York: Wiley.
go back to reference Kim, J., Ni, W., & Kan, E. C. (2006). Crosstalk reduction with nonlinear transmission lines for high-speed VLSI system. In IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, September 11–13, 2006, Paper No. 29.6. Kim, J., Ni, W., & Kan, E. C. (2006). Crosstalk reduction with nonlinear transmission lines for high-speed VLSI system. In IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, September 11–13, 2006, Paper No. 29.6.
go back to reference Lapedus, M. (May 2016). What’s next for NAND? Semiconductor engineering, manufacturing, design and test. Lapedus, M. (May 2016). What’s next for NAND? Semiconductor engineering, manufacturing, design and test.
go back to reference Lee, T. H. (2004). The design of CMOS radio frequency integrated circuits (2nd ed.). Cambridge: Cambridge University Press. Lee, T. H. (2004). The design of CMOS radio frequency integrated circuits (2nd ed.). Cambridge: Cambridge University Press.
go back to reference Liu, C., Zhang, J., Datta, A. K., & Tiwari, S. (2002). Heating effects of clock drivers in bulk, SOI, and 3-D CMOS. IEEE Electron Device Letters, 23, 716–718.CrossRef Liu, C., Zhang, J., Datta, A. K., & Tiwari, S. (2002). Heating effects of clock drivers in bulk, SOI, and 3-D CMOS. IEEE Electron Device Letters, 23, 716–718.CrossRef
go back to reference Lyon, K. G., Yu, F., & Kan, E. C. (2010). A UWB-IR transmitter using frequency conversion in nonlinear transmission lines with 16pJ/pulse energy consumption. IEEE Transactions on Microwave Theory and Techniques, 58(12), 3617–3625.CrossRef Lyon, K. G., Yu, F., & Kan, E. C. (2010). A UWB-IR transmitter using frequency conversion in nonlinear transmission lines with 16pJ/pulse energy consumption. IEEE Transactions on Microwave Theory and Techniques, 58(12), 3617–3625.CrossRef
go back to reference Ma, Y., & Kan, E. C. (2014). Accurate indoor ranging by broadband harmonic generation in passive NLTL backscatter tags. IEEE Transactions on Microwave Theory and Techniques, 62(5), 1249–1261.CrossRef Ma, Y., & Kan, E. C. (2014). Accurate indoor ranging by broadband harmonic generation in passive NLTL backscatter tags. IEEE Transactions on Microwave Theory and Techniques, 62(5), 1249–1261.CrossRef
go back to reference O’Mahony, F., Yue, C. P., Horowitz, M. A., & Wong, S. S. (2003). A 10-GHz global clock distribution using coupled standing-wave oscillators. IEEE Journal of Solid-State Circuits, 38(11), 1813–1820.CrossRef O’Mahony, F., Yue, C. P., Horowitz, M. A., & Wong, S. S. (2003). A 10-GHz global clock distribution using coupled standing-wave oscillators. IEEE Journal of Solid-State Circuits, 38(11), 1813–1820.CrossRef
go back to reference Pozar, D. M. (1998). Microwave engineering (2nd ed.). New York: Wiley. Pozar, D. M. (1998). Microwave engineering (2nd ed.). New York: Wiley.
go back to reference Rabaey, J. M. (2002). Digital integrated circuits: A design perspective (2nd ed.). Upper Saddle River: Prentice-Hall. Rabaey, J. M. (2002). Digital integrated circuits: A design perspective (2nd ed.). Upper Saddle River: Prentice-Hall.
go back to reference Razavi, B. (2011). RF microelectronics (2nd ed.). Upper Saddle River: Prentice Hall. Razavi, B. (2011). RF microelectronics (2nd ed.). Upper Saddle River: Prentice Hall.
go back to reference Ricketts, D., Li, X., Sun, N., Woo, K., & Ham, D. (2007). On the self-generation of electrical soliton pulses. IEEE Journal of Solid-State Circuits, 42, 1657–1663.CrossRef Ricketts, D., Li, X., Sun, N., Woo, K., & Ham, D. (2007). On the self-generation of electrical soliton pulses. IEEE Journal of Solid-State Circuits, 42, 1657–1663.CrossRef
go back to reference Rouphael, T. J. (2014). Wireless receiver architecture and design: Antennas, RF, synthesizers, mixed signal and digital signal processing. Oxfordshire: Academic. Rouphael, T. J. (2014). Wireless receiver architecture and design: Antennas, RF, synthesizers, mixed signal and digital signal processing. Oxfordshire: Academic.
go back to reference Simons, R. N. (2001). Coplanar waveguide circuits, components, and systems. New York: Wiley.CrossRef Simons, R. N. (2001). Coplanar waveguide circuits, components, and systems. New York: Wiley.CrossRef
go back to reference Wang, P., Pei, G., & Kan, E. C. (2004). Pulsed wave interconnect. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(5), 453–463.CrossRef Wang, P., Pei, G., & Kan, E. C. (2004). Pulsed wave interconnect. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(5), 453–463.CrossRef
go back to reference Young, B. (2001). Digital signal integrity, modeling and simulation with interconnects and packages. Upper Saddle River: Prentice Hall. Young, B. (2001). Digital signal integrity, modeling and simulation with interconnects and packages. Upper Saddle River: Prentice Hall.
go back to reference Yu, F., Lyon, K. G., & Kan, E. C. (2010). A novel passive RFID transponder using harmonic generation of nonlinear transmission lines. IEEE Transactions on Microwave Theory and Techniques, 58(12), 4121–4127. Yu, F., Lyon, K. G., & Kan, E. C. (2010). A novel passive RFID transponder using harmonic generation of nonlinear transmission lines. IEEE Transactions on Microwave Theory and Techniques, 58(12), 4121–4127.
Metadata
Title
Waveform Shaping Structures and Transmission Lines on CMOS
Authors
Yanjun Ma
Edwin Kan
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-48339-9_13