Skip to main content
Top
Published in: Experiments in Fluids 4-5/2009

01-10-2009 | Research Article

Wavefront sensing for three-component three-dimensional flow velocimetry in microfluidics

Authors: S. Chen, N. Angarita-Jaimes, D. Angarita-Jaimes, B. Pelc, A. H. Greenaway, C. E. Towers, D. Lin, D. P. Towers

Published in: Experiments in Fluids | Issue 4-5/2009

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present the application of wavefront sensing to three-component, three-dimensional micro particle tracking velocimetry (μPTV). The technique is based upon examining the defocus of the wavefront scattered by a tracer particle and from such information establishing the 3-D tracer location. The imaging system incorporates a cylindrical lens acting as an anamorphic element that creates different magnifications in the two orthogonal axes. A single anamorphic image is obtained from each tracer, which contains sufficient information to reconstruct the wavefront defocus and uniquely identify the tracer’s axial position. A mathematical model of the optical system is developed and shows that the lateral and depth performance of the sensor can be largely independently varied across a wide range. Hence, 3-D image resolution can be achieved from a single viewpoint, using simple and inexpensive optics and applied to a wide variety of microfluidic or biological systems. Our initial results show that an uncertainty in depth of 0.18 μm was achieved over a 20-μm range. The technique was employed to measure the 3-D velocity field of micron-sized fluorescent tracers in a flow within a micro channel, and an uncertainty of 2.8 μm was obtained in the axial direction over a range of 500 μm. The experimental results were in agreement with the expected fluid flow when compared to the corresponding CFD model. Thus, wavefront sensing proved to be an effective approach to obtain quantitative measurements of three-component three-dimensional flows in microfluidic devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Angarita-Jaimes NC et al (2006) Wavefront sensing for single view three-component three-dimensional flow velocimetry. Exp Fluids 41(6):881CrossRef Angarita-Jaimes NC et al (2006) Wavefront sensing for single view three-component three-dimensional flow velocimetry. Exp Fluids 41(6):881CrossRef
go back to reference Bown MR et al (2006) Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV. Meas Sci Technol 17:2175CrossRef Bown MR et al (2006) Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV. Meas Sci Technol 17:2175CrossRef
go back to reference Crocker J, Grier D (1996) Methods of Digital Video Microscopy for Colloidal Studies. J Colloid Interface Sci 179:298CrossRef Crocker J, Grier D (1996) Methods of Digital Video Microscopy for Colloidal Studies. J Colloid Interface Sci 179:298CrossRef
go back to reference Gibson FS, Lanni F (1991) Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. J Opt Soc Am A 8:1601CrossRef Gibson FS, Lanni F (1991) Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. J Opt Soc Am A 8:1601CrossRef
go back to reference Guerrero JA et al (2000) Particle positioning from CCD images: experiments and comparison to the generalized Lorenz-Mie theory. Meas Sci Technol 11(5):568–575CrossRef Guerrero JA et al (2000) Particle positioning from CCD images: experiments and comparison to the generalized Lorenz-Mie theory. Meas Sci Technol 11(5):568–575CrossRef
go back to reference Guerrero JA et al (2006) 3D particle positioning from CCD images using the generalized Lorenz-Mie and Huygens-Fresnel theories. Meas Sci Technol 17:2328–2334CrossRef Guerrero JA et al (2006) 3D particle positioning from CCD images using the generalized Lorenz-Mie and Huygens-Fresnel theories. Meas Sci Technol 17:2328–2334CrossRef
go back to reference Hecht E (1987) Optics, 2nd edn. Addison-Wesley Publishing Company, Reading Hecht E (1987) Optics, 2nd edn. Addison-Wesley Publishing Company, Reading
go back to reference Kajitani L, Dabiri D (2005) A full three-dimensional characterization of defocusing digital particle image velocimetry. Meas Sci Technol 16:790–804CrossRef Kajitani L, Dabiri D (2005) A full three-dimensional characterization of defocusing digital particle image velocimetry. Meas Sci Technol 16:790–804CrossRef
go back to reference Kao HP, Verkman AS (1994) Tracking of Single Fluorescent Particles in Three Dimensions: Use of Cylindrical Optics to Encode Particle Position. Biophys J 67:1291CrossRef Kao HP, Verkman AS (1994) Tracking of Single Fluorescent Particles in Three Dimensions: Use of Cylindrical Optics to Encode Particle Position. Biophys J 67:1291CrossRef
go back to reference Klank H et al (2002) PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behaviour. J Micromech Microeng 12:862CrossRef Klank H et al (2002) PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behaviour. J Micromech Microeng 12:862CrossRef
go back to reference Lin D et al (2008) Three-dimensional particle imaging by defocusing method with an annular aperture. Opt Lett 33(9):905CrossRef Lin D et al (2008) Three-dimensional particle imaging by defocusing method with an annular aperture. Opt Lett 33(9):905CrossRef
go back to reference Lindken R et al (2006) Stereoscopic micro particle image velocimetry. Exp Fluids 41(2):161CrossRef Lindken R et al (2006) Stereoscopic micro particle image velocimetry. Exp Fluids 41(2):161CrossRef
go back to reference Luo R et al (2006) Three-dimensional tracking of fluorescent particles applied to micro-fluidic measurements. J Micromech Microeng 16:1689CrossRef Luo R et al (2006) Three-dimensional tracking of fluorescent particles applied to micro-fluidic measurements. J Micromech Microeng 16:1689CrossRef
go back to reference Moreno D et al (2000) Particle positioning from charge-coupled device images by the generalized Lorenz-Mie theory and comparison with experiment’. Appl Opt 39(28):5117–5124CrossRefMathSciNet Moreno D et al (2000) Particle positioning from charge-coupled device images by the generalized Lorenz-Mie theory and comparison with experiment’. Appl Opt 39(28):5117–5124CrossRefMathSciNet
go back to reference Otsu N (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1):62CrossRefMathSciNet Otsu N (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1):62CrossRefMathSciNet
go back to reference Ovryn B (2000) Three-dimensional forward scattering particle imaging velocimetry applied to a microscopic field-of-view. Exp Fluids 29:S175–S184CrossRef Ovryn B (2000) Three-dimensional forward scattering particle imaging velocimetry applied to a microscopic field-of-view. Exp Fluids 29:S175–S184CrossRef
go back to reference Park JS, Kihm KD (2006) Three-dimensional micro-PTV using deconvolution microscopy. Exp Fluids 40:491CrossRef Park JS, Kihm KD (2006) Three-dimensional micro-PTV using deconvolution microscopy. Exp Fluids 40:491CrossRef
go back to reference Park JS et al (2004) Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Exp Fluids 37:105 Park JS et al (2004) Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Exp Fluids 37:105
go back to reference Pereira F, Gharib M (2002) Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows. Meas Sci Technol 15:1104–1112 Pereira F, Gharib M (2002) Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows. Meas Sci Technol 15:1104–1112
go back to reference Pereira F et al (2000) Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows. Exp Fluids 29(7):S78–S84CrossRef Pereira F et al (2000) Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows. Exp Fluids 29(7):S78–S84CrossRef
go back to reference Pereira F et al (2007) Microscale 3D flow mapping with μDDPIV. Exp Fluids 42:589–599CrossRef Pereira F et al (2007) Microscale 3D flow mapping with μDDPIV. Exp Fluids 42:589–599CrossRef
go back to reference Pu Y et al (2000) Off-axis holographic particle image velocimetry for diagnosing particulate flows. Exp Fluids 29:S117–S128CrossRef Pu Y et al (2000) Off-axis holographic particle image velocimetry for diagnosing particulate flows. Exp Fluids 29:S117–S128CrossRef
go back to reference Rohaly J et al. (2001) Monocular 3-D active micro-PTV. The 4th international symposium on particle image velocimetry (PIV’01), Gottingen, Germany Rohaly J et al. (2001) Monocular 3-D active micro-PTV. The 4th international symposium on particle image velocimetry (PIV’01), Gottingen, Germany
go back to reference Sheng J et al (2003) Single Beam Two-Views Holographic Particle Image Velocimetry. Appl Opt 42(2):235–250CrossRef Sheng J et al (2003) Single Beam Two-Views Holographic Particle Image Velocimetry. Appl Opt 42(2):235–250CrossRef
go back to reference Sheng J et al (2006) Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl Opt 45(16):3893–3901CrossRef Sheng J et al (2006) Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl Opt 45(16):3893–3901CrossRef
go back to reference Speidel M et al (2003) Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt Lett 28(2):69CrossRef Speidel M et al (2003) Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt Lett 28(2):69CrossRef
go back to reference Tien W et al (2008) A color-coded backlighted defocusing digital particle image velocimetry system. Exp Fluids 44:1015–1026CrossRef Tien W et al (2008) A color-coded backlighted defocusing digital particle image velocimetry system. Exp Fluids 44:1015–1026CrossRef
go back to reference Toprak E et al (2007) Three-dimensional particle tracking via bifocal imaging. Nano Letters 7(7):2043–2045CrossRef Toprak E et al (2007) Three-dimensional particle tracking via bifocal imaging. Nano Letters 7(7):2043–2045CrossRef
go back to reference Towers CE et al (2006) Three-dimensional particle imaging by wavefront sensing. Opt Lett 31(9):1220CrossRef Towers CE et al (2006) Three-dimensional particle imaging by wavefront sensing. Opt Lett 31(9):1220CrossRef
go back to reference Willert CE, Gharib M (1992) Three-dimensional particle imaging with a single camera. Exp Fluids 12:353CrossRef Willert CE, Gharib M (1992) Three-dimensional particle imaging with a single camera. Exp Fluids 12:353CrossRef
go back to reference Wu M et al (2005) Three-dimensional fluorescent particle tracking at micron-scale using a single camera. Exp Fluids 38:461CrossRef Wu M et al (2005) Three-dimensional fluorescent particle tracking at micron-scale using a single camera. Exp Fluids 38:461CrossRef
go back to reference Yoon SY, Kim KC (2006) 3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept. Meas Sci Tech 17(11):2897CrossRef Yoon SY, Kim KC (2006) 3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept. Meas Sci Tech 17(11):2897CrossRef
go back to reference Zhang Z, Menq C (2008) Three-dimensional particle tracking with subnanometer resolution using off-focus images. App Opt 47(13):2361CrossRef Zhang Z, Menq C (2008) Three-dimensional particle tracking with subnanometer resolution using off-focus images. App Opt 47(13):2361CrossRef
Metadata
Title
Wavefront sensing for three-component three-dimensional flow velocimetry in microfluidics
Authors
S. Chen
N. Angarita-Jaimes
D. Angarita-Jaimes
B. Pelc
A. H. Greenaway
C. E. Towers
D. Lin
D. P. Towers
Publication date
01-10-2009
Publisher
Springer-Verlag
Published in
Experiments in Fluids / Issue 4-5/2009
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-009-0737-z

Other articles of this Issue 4-5/2009

Experiments in Fluids 4-5/2009 Go to the issue

Premium Partners