Skip to main content
Top

2016 | OriginalPaper | Chapter

5. Weak Disconjugacy for Linear Hamiltonian Systems

Authors : Russell Johnson, Rafael Obaya, Sylvia Novo, Carmen Núñez, Roberta Fabbri

Published in: Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The analysis of nonautonomous linear Hamiltonian systems with the disconjugacy property is a classical branch of the theory of linear ODEs. One of the most interesting consequences of this property is the existence of principal functions, which constitute an extension of the concept of Weyl functions to many situations where exponential dichotomy is lacking. In this chapter, the disconjugacy property is relaxed to the so-called weak disconjugacy, which can be characterized in terms of the property of nonoscillation of the system. In what follows, a family of systems is considered. It is proved that the so-called uniform weak disconjugacy of all the systems suffices to ensure the existence of the principal functions, whose main properties are then described. And it is shown that this setting is less restrictive than that of disconjugacy. In the rest of the chapter, relations are established between the characteristics of the principal functions for a given family and: (1) the properties of the Lyapunov exponents, (2) the properties of the rotation number, and (3) the existence of exponential dichotomy. The consequences of the analysis presented here will be fundamental in the developments of the remaining chapters of the book.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
34.
go back to reference W.A. Coppel, Disconjugacy, Lecture Notes in Mathematics 220, Springer-Verlag, Berlin, Heidelberg, New York, 1971. W.A. Coppel, Disconjugacy, Lecture Notes in Mathematics 220, Springer-Verlag, Berlin, Heidelberg, New York, 1971.
35.
go back to reference I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai, Ergodic Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1982. I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai, Ergodic Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
43.
go back to reference R. Fabbri, R. Johnson, S. Novo, C. Núñez, Some remarks concerning weakly disconjugate linear Hamiltonian systems, J. Math. Anal. Appl. 380 (2011), 853–864. R. Fabbri, R. Johnson, S. Novo, C. Núñez, Some remarks concerning weakly disconjugate linear Hamiltonian systems, J. Math. Anal. Appl. 380 (2011), 853–864.
47.
go back to reference R. Fabbri, R. Johnson, C. Núñez, On the Yakubovich Frequency Theorem for linear non-autonomous control processes, Discrete Contin. Dynam. Systems, Ser. A 9 (3) (2003), 677–704. R. Fabbri, R. Johnson, C. Núñez, On the Yakubovich Frequency Theorem for linear non-autonomous control processes, Discrete Contin. Dynam. Systems, Ser. A 9 (3) (2003), 677–704.
48.
go back to reference R. Fabbri, R. Johnson, C. Núñez, Disconjugacy and the rotation number for linear, non-autonomous Hamiltonian systems, Ann. Mat. Pura App. 185 (2006), S3–S21. R. Fabbri, R. Johnson, C. Núñez, Disconjugacy and the rotation number for linear, non-autonomous Hamiltonian systems, Ann. Mat. Pura App. 185 (2006), S3–S21.
53.
go back to reference I.M. Gel’fand, V.B. Lidskiĭ, On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients, Amer. Mat. Soc. Transl. (2) 8 (1958), 143–181. I.M. Gel’fand, V.B. Lidskiĭ, On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients, Amer. Mat. Soc. Transl. (2) 8 (1958), 143–181.
56.
go back to reference P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.MATH P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.MATH
58.
go back to reference E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1975.MATH E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1975.MATH
74.
go back to reference R. Johnson, M. Nerurkar, On null controllability of linear systems with recurrent coefficients and constrained controls, J. Dynam. Differential Equations 4 (2) (1992), 259–273. R. Johnson, M. Nerurkar, On null controllability of linear systems with recurrent coefficients and constrained controls, J. Dynam. Differential Equations 4 (2) (1992), 259–273.
76.
go back to reference R. Johnson, M. Nerurkar, Stabilization and random linear regulator problem for random linear control processes, J. Math. Anal. Appl. 197 (1996), 608–629. R. Johnson, M. Nerurkar, Stabilization and random linear regulator problem for random linear control processes, J. Math. Anal. Appl. 197 (1996), 608–629.
77.
go back to reference R. Johnson, M. Nerurkar, Controllability, stabilization, and the regulator problem for random differential systems, Mem. Amer. Math. Soc. 646, Amer. Math. Soc., Providence, 1998. R. Johnson, M. Nerurkar, Controllability, stabilization, and the regulator problem for random differential systems, Mem. Amer. Math. Soc. 646, Amer. Math. Soc., Providence, 1998.
78.
go back to reference R. Johnson, S. Novo, C. Núñez, R. Obaya, Uniform weak disconjugacy and principal solutions for linear Hamiltonian systems, Recent Advances in Delay Differential and Difference Equations, Springer Proceedings in Mathematics & Statistics 94 (2014), 131–159.CrossRefMATH R. Johnson, S. Novo, C. Núñez, R. Obaya, Uniform weak disconjugacy and principal solutions for linear Hamiltonian systems, Recent Advances in Delay Differential and Difference Equations, Springer Proceedings in Mathematics & Statistics 94 (2014), 131–159.CrossRefMATH
81.
go back to reference R. Johnson, S. Novo, R. Obaya, Ergodic properties and Weyl M-functions for linear Hamiltonian systems, Proc. Roy. Soc. Edinburgh 130A (2000), 803–822. R. Johnson, S. Novo, R. Obaya, Ergodic properties and Weyl M-functions for linear Hamiltonian systems, Proc. Roy. Soc. Edinburgh 130A (2000), 803–822.
82.
go back to reference R. Johnson, S. Novo, R. Obaya, An ergodic and topological approach to disconjugate linear Hamiltonian systems, Illinois J. Math. 45 (2001), 1045–1079. R. Johnson, S. Novo, R. Obaya, An ergodic and topological approach to disconjugate linear Hamiltonian systems, Illinois J. Math. 45 (2001), 1045–1079.
84.
go back to reference R. Johnson, C. Núñez, Remarks on linear-quadratic dissipative control systems Discr. Cont. Dyn. Sys. B, 20 (3) (2015), 889–914. R. Johnson, C. Núñez, Remarks on linear-quadratic dissipative control systems Discr. Cont. Dyn. Sys. B, 20 (3) (2015), 889–914.
85.
go back to reference R. Johnson, C. Núñez, R. Obaya, Dynamical methods for linear Hamiltonian systems with applications to control processes, J. Dynam. Differential Equations 25 (3) (2013), 679–713. R. Johnson, C. Núñez, R. Obaya, Dynamical methods for linear Hamiltonian systems with applications to control processes, J. Dynam. Differential Equations 25 (3) (2013), 679–713.
89.
go back to reference T. Kato, Perturbation Theory for Linear Operators, Corrected Printing of the Second Edition, Springer-Verlag, Berlin, Heidelberg 1995. T. Kato, Perturbation Theory for Linear Operators, Corrected Printing of the Second Edition, Springer-Verlag, Berlin, Heidelberg 1995.
92.
go back to reference W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory, Mathematical Topics 6, Akademie Verlag, Berlin, 1995.MATH W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory, Mathematical Topics 6, Akademie Verlag, Berlin, 1995.MATH
96.
go back to reference V.B. Lidskiĭ, Oscillation theorems for canonical systems of differential equations, Dokl. Akad. Nauk. SSSR 102 (1955), 877–880. (English translation in: NASA Technical Translation, P-14, 696.) V.B. Lidskiĭ, Oscillation theorems for canonical systems of differential equations, Dokl. Akad. Nauk. SSSR 102 (1955), 877–880. (English translation in: NASA Technical Translation, P-14, 696.)
104.
go back to reference V.M. Millionščikov, Proof of the existence of irregular systems of linear differential equations with almost periodic coefficients, Diff. Urav. 4 No. 3 (1968), 391–396. V.M. Millionščikov, Proof of the existence of irregular systems of linear differential equations with almost periodic coefficients, Diff. Urav. 4 No. 3 (1968), 391–396.
108.
go back to reference J. Moser, An example of a Schrödinger equation with almost-periodic potential and no-where dense spectrum, Comment. Math. Helv. 56 (1981), 198–224. J. Moser, An example of a Schrödinger equation with almost-periodic potential and no-where dense spectrum, Comment. Math. Helv. 56 (1981), 198–224.
124.
go back to reference W.T. Reid, Principal solutions of nonoscillatory linear differential systems, J. Math. Anal. Appl. 9 (1964), 397–423. W.T. Reid, Principal solutions of nonoscillatory linear differential systems, J. Math. Anal. Appl. 9 (1964), 397–423.
126.
go back to reference W.T. Reid, A continuity property of principal solutions of linear hamiltonian differential systems, Scripta Math. 29 (1973), 337–350. W.T. Reid, A continuity property of principal solutions of linear hamiltonian differential systems, Scripta Math. 29 (1973), 337–350.
127.
go back to reference W.T. Reid, Sturmian Theory for Ordinary Differential Equations, Applied Mathematical Sciences 31, Springer-Verlag, New York, 1980.CrossRef W.T. Reid, Sturmian Theory for Ordinary Differential Equations, Applied Mathematical Sciences 31, Springer-Verlag, New York, 1980.CrossRef
136.
go back to reference H.H. Schaefer, Topological Vector Spaces, Springer-Verlag, New York, Heidelberg, Berlin, 1970.MATH H.H. Schaefer, Topological Vector Spaces, Springer-Verlag, New York, Heidelberg, Berlin, 1970.MATH
137.
go back to reference I. Schneiberg, Zeros of integrals along trajectories of ergodic systems, Funk. Anal. Appl., 19 (1985), 486–490.MathSciNet I. Schneiberg, Zeros of integrals along trajectories of ergodic systems, Funk. Anal. Appl., 19 (1985), 486–490.MathSciNet
141.
go back to reference P. Šepitka, R. Šimon Hilscher, Minimal principal solution at infinity for nonoscillatory linear Hamiltonian systems, J. Dynam. Differential Equations, 26 (1) (2014), 57–91.MathSciNetCrossRefMATH P. Šepitka, R. Šimon Hilscher, Minimal principal solution at infinity for nonoscillatory linear Hamiltonian systems, J. Dynam. Differential Equations, 26 (1) (2014), 57–91.MathSciNetCrossRefMATH
142.
go back to reference P. Šepitka, R. Šimon Hilscher, Principal Solutions at Infinity of Given Ranks for Nonoscillatory Linear Hamiltonian Systems, J. Dynam. Differential Equations 27 (1) (2015), 137–175. P. Šepitka, R. Šimon Hilscher, Principal Solutions at Infinity of Given Ranks for Nonoscillatory Linear Hamiltonian Systems, J. Dynam. Differential Equations 27 (1) (2015), 137–175.
147.
go back to reference R.E. Vinograd, A problem suggested by N. P. Erugin, Diff. Urav. 11 No. 4 (1975), 632–638. R.E. Vinograd, A problem suggested by N. P. Erugin, Diff. Urav. 11 No. 4 (1975), 632–638.
153.
go back to reference V.A. Yakubovich, Arguments on the group of symplectic matrices, Mat. Sb. 55 (97) (1961), 255–280 (Russian). V.A. Yakubovich, Arguments on the group of symplectic matrices, Mat. Sb. 55 (97) (1961), 255–280 (Russian).
154.
go back to reference V.A. Yakubovich, Oscillatory properties of the solutions of canonical equations, Amer. Math. Soc. Transl. Ser. 2 42 (1964), 247–288.MATH V.A. Yakubovich, Oscillatory properties of the solutions of canonical equations, Amer. Math. Soc. Transl. Ser. 2 42 (1964), 247–288.MATH
Metadata
Title
Weak Disconjugacy for Linear Hamiltonian Systems
Authors
Russell Johnson
Rafael Obaya
Sylvia Novo
Carmen Núñez
Roberta Fabbri
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-29025-6_5