Skip to main content
Top
Published in: Wireless Personal Communications 3/2023

27-01-2024 | Research

Wearable Beam Steering Branch Line Coupler Fed Array Antenna for WBAN Applications

Authors: Ankur Utsav, Ritesh Kumar Badhai

Published in: Wireless Personal Communications | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper, introduce a wireless body area network antenna array with beam steering that is fed by a branch line coupler (BLC). The proposed BLC feeding network and the antenna are fabricated on wearable jeans substrate, and the proposed antenna operates at the ISM-I (2.45 GHz) band. The Branch line coupler fed array antenna (BLCAA) allows for 25° of beam steering with a half-power beam width of 25° and 35° in the presence of free space and the human body, respectively. The proposed antenna’s specific absorption rate was found to be 0.21 W/Kg, which complies with IEEE regulations. To assess the effect of bending on the antenna's performance, simulations and tests were conducted, revealing that the antenna’s characteristics were minimally affected by bending. The BLCAA exhibits good impedance matching with high peak gain and a good radiation pattern. The simulated results are experimentally validated and found good approximation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lim, H. B., Baumann, D., & Li, E. P. (2010). A human body model for efficient numerical characterization of UWB signal propagation in wireless body area networks. IEEE Transactions on Biomedical Engineering, 58(3), 689–697.CrossRefPubMed Lim, H. B., Baumann, D., & Li, E. P. (2010). A human body model for efficient numerical characterization of UWB signal propagation in wireless body area networks. IEEE Transactions on Biomedical Engineering, 58(3), 689–697.CrossRefPubMed
2.
go back to reference Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1658–1686.CrossRef Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1658–1686.CrossRef
3.
go back to reference Rahim, H. A., Abdulmalek, M., Soh, P. J., Rani, K. A., Hisham, N., & Vandenbosch, G. A. E. (2016). Subject-specific effect of metallic body accessories on path loss of dynamic on-body propagation channels. Scientific Reports, 6(1), 1–12.CrossRef Rahim, H. A., Abdulmalek, M., Soh, P. J., Rani, K. A., Hisham, N., & Vandenbosch, G. A. E. (2016). Subject-specific effect of metallic body accessories on path loss of dynamic on-body propagation channels. Scientific Reports, 6(1), 1–12.CrossRef
4.
go back to reference Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., & Seneviratne, A. (2017). A survey of wearable devices and challenges. IEEE Communications Surveys & Tutorials, 19(4), 2573–2620.CrossRef Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., & Seneviratne, A. (2017). A survey of wearable devices and challenges. IEEE Communications Surveys & Tutorials, 19(4), 2573–2620.CrossRef
5.
go back to reference Kumpuniemi, T., Hämäläinen, M., Yazdandoost, K. Y., & Iinatti, J. (2017). Human body shadowing effect on dynamic UWB on-body radio channels. IEEE antennas and wireless propagation letters, 16, 1871–1874.ADSCrossRef Kumpuniemi, T., Hämäläinen, M., Yazdandoost, K. Y., & Iinatti, J. (2017). Human body shadowing effect on dynamic UWB on-body radio channels. IEEE antennas and wireless propagation letters, 16, 1871–1874.ADSCrossRef
6.
go back to reference Liu, Z., Liu, B., & Chen, C. W. (2017). Buffer-aware resource allocation scheme with energy efficiency and QoS effectiveness in wireless body area networks. IEEE Access, 5, 20763–20776.CrossRef Liu, Z., Liu, B., & Chen, C. W. (2017). Buffer-aware resource allocation scheme with energy efficiency and QoS effectiveness in wireless body area networks. IEEE Access, 5, 20763–20776.CrossRef
7.
go back to reference IEEE Standard for Local and Metropolitan Area Networks—Part 15. 6: Wireless Body Area Networks, IEEE Standard 802.15.6–2012, 2012. IEEE Standard for Local and Metropolitan Area Networks—Part 15. 6: Wireless Body Area Networks, IEEE Standard 802.15.6–2012, 2012.
8.
go back to reference Aun, N. F. M., Soh, P. J., Al-Hadi, A. A., Jamlos, M. F., Vandenbosch, G. A., & Schreurs, D. (2017). Revolutionizing wearables for 5G: 5G technologies: Recent developments and future perspectives for wearable devices and antennas. IEEE Microwave Magazine, 18(3), 108–124.CrossRef Aun, N. F. M., Soh, P. J., Al-Hadi, A. A., Jamlos, M. F., Vandenbosch, G. A., & Schreurs, D. (2017). Revolutionizing wearables for 5G: 5G technologies: Recent developments and future perspectives for wearable devices and antennas. IEEE Microwave Magazine, 18(3), 108–124.CrossRef
10.
go back to reference Soh, P. J., Vandenbosch, G., Wee, F. H., van den Bosch, A., Martinez-Vazquez, M., & Schreurs, D. (2015). Specific absorption rate (SAR) evaluation of textile antennas. IEEE Antennas and Propagation Magazine, 57(2), 229–240.ADSCrossRef Soh, P. J., Vandenbosch, G., Wee, F. H., van den Bosch, A., Martinez-Vazquez, M., & Schreurs, D. (2015). Specific absorption rate (SAR) evaluation of textile antennas. IEEE Antennas and Propagation Magazine, 57(2), 229–240.ADSCrossRef
11.
go back to reference Ashyap, A. Y., Abidin, Z. Z., Dahlan, S. H., Majid, H. A., Shah, S. M., Kamarudin, M. R., & Alomainy, A. (2017). Compact and low-profile textile EBG-based antenna for wearable medical applications. IEEE Antennas and Wireless Propagation Letters, 16, 2550–2553.ADSCrossRef Ashyap, A. Y., Abidin, Z. Z., Dahlan, S. H., Majid, H. A., Shah, S. M., Kamarudin, M. R., & Alomainy, A. (2017). Compact and low-profile textile EBG-based antenna for wearable medical applications. IEEE Antennas and Wireless Propagation Letters, 16, 2550–2553.ADSCrossRef
12.
go back to reference Fernandez, M., Espinosa, H. G., Thiel, D. V., & Arrinda, A. (2018). Wearable slot antenna at 2.45 GHz for off-body radiation: Analysis of efficiency, frequency shift, and body absorption. Bioelectromagnetics, 39(1), 25–34.CrossRefPubMed Fernandez, M., Espinosa, H. G., Thiel, D. V., & Arrinda, A. (2018). Wearable slot antenna at 2.45 GHz for off-body radiation: Analysis of efficiency, frequency shift, and body absorption. Bioelectromagnetics, 39(1), 25–34.CrossRefPubMed
13.
go back to reference Kumar Biswas, A., & Chakraborty, U. (2019). Compact wearable MIMO antenna with improved port isolation for ultra-wideband applications. IET Microwaves, Antennas & Propagation, 13(4), 498–504.CrossRef Kumar Biswas, A., & Chakraborty, U. (2019). Compact wearable MIMO antenna with improved port isolation for ultra-wideband applications. IET Microwaves, Antennas & Propagation, 13(4), 498–504.CrossRef
14.
go back to reference Zahran, S. R., Abdalla, M. A., & Gaafar, A. (2019). New thin wide-band bracelet-like antenna with low SAR for on-arm WBAN applications. IET Microwaves, Antennas & Propagation, 13(8), 1219–1225.CrossRef Zahran, S. R., Abdalla, M. A., & Gaafar, A. (2019). New thin wide-band bracelet-like antenna with low SAR for on-arm WBAN applications. IET Microwaves, Antennas & Propagation, 13(8), 1219–1225.CrossRef
15.
go back to reference Singh, V. K., Dhupkariya, S., & Bangari, N. (2017). Wearable ultra wide dual band flexible textile antenna for WiMax/WLAN application. Wireless Personal Communications, 95(2), 1075–1086.CrossRef Singh, V. K., Dhupkariya, S., & Bangari, N. (2017). Wearable ultra wide dual band flexible textile antenna for WiMax/WLAN application. Wireless Personal Communications, 95(2), 1075–1086.CrossRef
17.
go back to reference Mashagba, H. A., Rahim, H. A., Adam, I., Jamaluddin, M. H., Yasin, M. N. M., Jusoh, M., & Soh, P. J. (2021). A hybrid mutual coupling reduction technique in a dual-band MIMO textile antenna for WBAN and 5G applications. IEEE Access, 9, 150768–150780.CrossRef Mashagba, H. A., Rahim, H. A., Adam, I., Jamaluddin, M. H., Yasin, M. N. M., Jusoh, M., & Soh, P. J. (2021). A hybrid mutual coupling reduction technique in a dual-band MIMO textile antenna for WBAN and 5G applications. IEEE Access, 9, 150768–150780.CrossRef
18.
go back to reference Le, T. T., Kim, Y. D., & Yun, T. Y. (2021). A triple-band dual-open-ring high-gain high-efficiency antenna for wearable applications. IEEE Access, 9, 118435–118442.CrossRef Le, T. T., Kim, Y. D., & Yun, T. Y. (2021). A triple-band dual-open-ring high-gain high-efficiency antenna for wearable applications. IEEE Access, 9, 118435–118442.CrossRef
19.
go back to reference Zaidi, N. I., Abd Rahman, N. H., Yahya, M. F., Nordin, M. S. A., Subahir, S., Yamada, Y., & Majumdar, A. (2022). Analysis on bending performance of the electro-textile antennas with bandwidth enhancement for wearable tracking application. IEEE Access, 10, 31800–31820.CrossRef Zaidi, N. I., Abd Rahman, N. H., Yahya, M. F., Nordin, M. S. A., Subahir, S., Yamada, Y., & Majumdar, A. (2022). Analysis on bending performance of the electro-textile antennas with bandwidth enhancement for wearable tracking application. IEEE Access, 10, 31800–31820.CrossRef
20.
go back to reference Wagih, M. (2021). Broadband low-loss on-body UHF to millimeter-wave surface wave links using flexible textile single wire transmission lines. IEEE Open Journal of Antennas and Propagation, 3, 101–111.CrossRef Wagih, M. (2021). Broadband low-loss on-body UHF to millimeter-wave surface wave links using flexible textile single wire transmission lines. IEEE Open Journal of Antennas and Propagation, 3, 101–111.CrossRef
21.
go back to reference Martinez, I., Mao, C. X., Vital, D., Shahariar, H., Werner, D. H., Jur, J. S., & Bhardwaj, S. (2020). Compact, low-profile and robust textile antennas with improved bandwidth for easy garment integration. IEEE Access, 8, 77490–77500.CrossRef Martinez, I., Mao, C. X., Vital, D., Shahariar, H., Werner, D. H., Jur, J. S., & Bhardwaj, S. (2020). Compact, low-profile and robust textile antennas with improved bandwidth for easy garment integration. IEEE Access, 8, 77490–77500.CrossRef
22.
go back to reference Agneessens, S. (2017). Coupled eighth-mode substrate integrated waveguide antenna: Small and wideband with high-body antenna isolation. IEEE Access, 6, 1595–1602.CrossRef Agneessens, S. (2017). Coupled eighth-mode substrate integrated waveguide antenna: Small and wideband with high-body antenna isolation. IEEE Access, 6, 1595–1602.CrossRef
23.
go back to reference Wagih, M., Weddell, A. S., & Beeby, S. (2019). Millimeter-wave textile antenna for on-body RF energy harvesting in future 5G networks. In 2019 IEEE Wireless Power Transfer Conference (WPTC) (pp. 245–248). IEEE. Wagih, M., Weddell, A. S., & Beeby, S. (2019). Millimeter-wave textile antenna for on-body RF energy harvesting in future 5G networks. In 2019 IEEE Wireless Power Transfer Conference (WPTC) (pp. 245–248). IEEE.
24.
go back to reference Jais, M. I., Jamlos, M. F. B., Jusoh, M., Sabapathy, T., Kamarudin, M. R., Ahmad, R. B., & Ishak, N. L. (2013). A novel 2.45 GHz switchable beam textile antenna (SBTA) for outdoor wireless body area network (WBAN) applications. Progress in Electromagnetics Research, 138, 613–627.CrossRef Jais, M. I., Jamlos, M. F. B., Jusoh, M., Sabapathy, T., Kamarudin, M. R., Ahmad, R. B., & Ishak, N. L. (2013). A novel 2.45 GHz switchable beam textile antenna (SBTA) for outdoor wireless body area network (WBAN) applications. Progress in Electromagnetics Research, 138, 613–627.CrossRef
26.
go back to reference Alonso, L., Ver Hoeye, S., Fernandez, M., Vázquez, C., Camblor, R., Hotopan, G.,& Las-Heras, F. (2015, May). Millimetre wave textile integrated waveguide beamforming antenna for radar applications. In Global Symposium on Millimeter-Waves (GSMM) (pp. 1–3). IEEE. Alonso, L., Ver Hoeye, S., Fernandez, M., Vázquez, C., Camblor, R., Hotopan, G.,& Las-Heras, F. (2015, May). Millimetre wave textile integrated waveguide beamforming antenna for radar applications. In Global Symposium on Millimeter-Waves (GSMM) (pp. 1–3). IEEE.
27.
go back to reference Casula, G. A., Montisci, G., & Muntoni, G. (2023). A novel design for dual-band wearable textile eighth-mode SIW antennas. IEEE Access, 11, 11555–11569.CrossRef Casula, G. A., Montisci, G., & Muntoni, G. (2023). A novel design for dual-band wearable textile eighth-mode SIW antennas. IEEE Access, 11, 11555–11569.CrossRef
28.
go back to reference Kaur, H., & Chawla, P. (2022). Performance analysis of novel wearable textile antenna design for medical and wireless applications. Wireless Personal Communications, 124(2), 1475–1491.CrossRef Kaur, H., & Chawla, P. (2022). Performance analysis of novel wearable textile antenna design for medical and wireless applications. Wireless Personal Communications, 124(2), 1475–1491.CrossRef
29.
go back to reference Aprilliyani, R., Dzagbletey, P. A., Lee, J. H., Jang, M. J., So, J. H., & Chung, J. Y. (2020). Effects of textile weaving and finishing processes on textile-based wearable patch antennas. IEEE Access, 8, 63295–63301.CrossRef Aprilliyani, R., Dzagbletey, P. A., Lee, J. H., Jang, M. J., So, J. H., & Chung, J. Y. (2020). Effects of textile weaving and finishing processes on textile-based wearable patch antennas. IEEE Access, 8, 63295–63301.CrossRef
30.
go back to reference Furse, C., Christensen, D. A., Durney, C. H., & Nagel, J. (2018). Basic introduction to bio electromagnetics. CRC Press. Furse, C., Christensen, D. A., Durney, C. H., & Nagel, J. (2018). Basic introduction to bio electromagnetics. CRC Press.
31.
go back to reference Pozar, D. M. (2011). Microwave engineering. Wiley. Pozar, D. M. (2011). Microwave engineering. Wiley.
Metadata
Title
Wearable Beam Steering Branch Line Coupler Fed Array Antenna for WBAN Applications
Authors
Ankur Utsav
Ritesh Kumar Badhai
Publication date
27-01-2024
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2023
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10851-0

Other articles of this Issue 3/2023

Wireless Personal Communications 3/2023 Go to the issue