Skip to main content
Top
Published in: Neural Processing Letters 3/2021

28-03-2021

Weighted Discriminative Sparse Representation for Image Classification

Authors: Zhen Liu, Xiao-Jun Wu, Zhenqiu Shu, Hefeng Yin, Zhe Chen

Published in: Neural Processing Letters | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sparse representation methods based on \(l _2\) norm regularization have attracted much attention due to its low computational cost and competitive performance. How to enhance the discriminability of \(l _2\) norm regularization-based representation method is a meaningful work. In this paper, we put forward a novel \(l _2\) norm regularization-based representation method, called Weighted Discriminative Sparse Representation for Classification (WDSRC), in which we consider the global discriminability and the local discriminability using two discriminative regularization terms of representation. The global discriminability is obtained by decorrelating the representation results stemming from all distinct classes. The local discriminability is achieved by the weighted representation in which the representation coefficient of the training images dissimilar to the test image will be reduced and the representation coefficient of the training images similar to the test image will be increased, which restrains the training images dissimilar to the test image and promotes the training images similar to the test image as much as possible in representing the test sample. By considering the global and local discriminability of representations simultaneously, the proposed WDSRC method can gain more discriminative representation for classification. Extensive experiments on benchmark datasets of object, face, action and flower demonstrate the effectiveness of the proposed WDSRC method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044CrossRef Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044CrossRef
2.
go back to reference Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef
3.
go back to reference Yang J, Wright J, Huang T S, Ma Y (2008) Image super-resolution as sparse representation of raw image patches. In: 2008 IEEE conference on computer vision and pattern recognition Yang J, Wright J, Huang T S, Ma Y (2008) Image super-resolution as sparse representation of raw image patches. In: 2008 IEEE conference on computer vision and pattern recognition
4.
go back to reference Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873MathSciNetCrossRef Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873MathSciNetCrossRef
5.
go back to reference Zheng WL, Shen SC, Lu BL (2016) Online depth image-based object tracking with sparse representation and object detection. Neural Process Lett 45(3):745–758CrossRef Zheng WL, Shen SC, Lu BL (2016) Online depth image-based object tracking with sparse representation and object detection. Neural Process Lett 45(3):745–758CrossRef
6.
go back to reference Ma Z, Xiang Z (2017) Robust visual tracking via binocular consistent sparse learning. Neural Process Lett 46(2):627–642MathSciNetCrossRef Ma Z, Xiang Z (2017) Robust visual tracking via binocular consistent sparse learning. Neural Process Lett 46(2):627–642MathSciNetCrossRef
7.
go back to reference Yin H, Li S, Fang L (2013) Simultaneous image fusion and super-resolution using sparse representation. Information Fusion 14(3):229–240CrossRef Yin H, Li S, Fang L (2013) Simultaneous image fusion and super-resolution using sparse representation. Information Fusion 14(3):229–240CrossRef
8.
go back to reference Yin H, Li Y, Chai Y, Liu Z, Zhu Z (2016) A novel sparse-representation-based multi-focus image fusion approach. Neurocomputing 216:216–229CrossRef Yin H, Li Y, Chai Y, Liu Z, Zhu Z (2016) A novel sparse-representation-based multi-focus image fusion approach. Neurocomputing 216:216–229CrossRef
9.
go back to reference Zheng H, Xie J, Jin Z (2012) Heteroscedastic sparse representation based classification for face recognition. Neural Process Lett 35(3):233–244CrossRef Zheng H, Xie J, Jin Z (2012) Heteroscedastic sparse representation based classification for face recognition. Neural Process Lett 35(3):233–244CrossRef
10.
go back to reference Liu Q (2016) Kernel local sparse representation based classifier. Neural Process Lett 43(1):85–95CrossRef Liu Q (2016) Kernel local sparse representation based classifier. Neural Process Lett 43(1):85–95CrossRef
11.
go back to reference Liu Z, Pu J, Xu M, Qiu Y (2015) Face recognition via weighted two phase test sample sparse representation. Neural Process Lett 41(1):43–53CrossRef Liu Z, Pu J, Xu M, Qiu Y (2015) Face recognition via weighted two phase test sample sparse representation. Neural Process Lett 41(1):43–53CrossRef
12.
go back to reference Tao Y, Yang J, Gui W (2017) Robust \(l_{2,1}\) norm-based sparse dictionary coding regularization of homogenous and heterogenous graph embeddings for image classifications. Neural Process Lett 47(3):1149–1175CrossRef Tao Y, Yang J, Gui W (2017) Robust \(l_{2,1}\) norm-based sparse dictionary coding regularization of homogenous and heterogenous graph embeddings for image classifications. Neural Process Lett 47(3):1149–1175CrossRef
13.
go back to reference Yin H, Wu X (2013) A new feature fusion approach based on LBP and sparse representation and its application to face recognition. In: International workshop on multiple classifier systems, pp 364–373 Yin H, Wu X (2013) A new feature fusion approach based on LBP and sparse representation and its application to face recognition. In: International workshop on multiple classifier systems, pp 364–373
14.
go back to reference Song X, Shao C, Yang X, Wu X (2017) Sparse representation-based classification using generalized weighted extended dictionary. Soft Comput 21(15):4335–4348CrossRef Song X, Shao C, Yang X, Wu X (2017) Sparse representation-based classification using generalized weighted extended dictionary. Soft Comput 21(15):4335–4348CrossRef
15.
go back to reference Shao C, Song X, Feng Z, Wu X, Zheng Y (2017) Dynamic dictionary optimization for sparse-representation-based face classification using local difference images. Inf Sci 393:1–14CrossRef Shao C, Song X, Feng Z, Wu X, Zheng Y (2017) Dynamic dictionary optimization for sparse-representation-based face classification using local difference images. Inf Sci 393:1–14CrossRef
16.
go back to reference Kim SJ, Koh K, Lustig M (2008) An interior-point method for large-scale \(l_{1}\)-regularized least squares. IEEE J Sel Top Signal Process 1(4):606–617CrossRef Kim SJ, Koh K, Lustig M (2008) An interior-point method for large-scale \(l_{1}\)-regularized least squares. IEEE J Sel Top Signal Process 1(4):606–617CrossRef
17.
go back to reference Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202MathSciNetCrossRef Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202MathSciNetCrossRef
18.
go back to reference Yang AY, Sastry SS, Ganesh A, Ma Y (2010) Fast \(l_{1}\) -minimization algorithms and an application in robust face recognition: a review. In: 17th IEEE international conference on image processing (ICIP), pp 1–12 Yang AY, Sastry SS, Ganesh A, Ma Y (2010) Fast \(l_{1}\) -minimization algorithms and an application in robust face recognition: a review. In: 17th IEEE international conference on image processing (ICIP), pp 1–12
19.
go back to reference Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition? In: 2011 International conference on computer visionn, pp 471–478 Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition? In: 2011 International conference on computer visionn, pp 471–478
20.
go back to reference Cai S, Zhang L, Zuo W, Feng X (2016) A probabilistic collaborative representation based approach for pattern classification. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2950–2959 Cai S, Zhang L, Zuo W, Feng X (2016) A probabilistic collaborative representation based approach for pattern classification. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2950–2959
21.
go back to reference Yang M, Zhang D, Wang S (2012) Relaxed collaborative representation for pattern classification. In: IEEE Conference on computer vision and pattern recognition (CVPR), pp 2224–2231 Yang M, Zhang D, Wang S (2012) Relaxed collaborative representation for pattern classification. In: IEEE Conference on computer vision and pattern recognition (CVPR), pp 2224–2231
22.
go back to reference Xu Y, Zhong Z, Yang J, You J, Zhang D (2017) A new discriminative sparse representation method for robust face recognition via \(l_{2}\) regularization. IEEE Trans Neural Netw Learn Syst 28(10):2233-2242 Xu Y, Zhong Z, Yang J, You J, Zhang D (2017) A new discriminative sparse representation method for robust face recognition via \(l_{2}\) regularization. IEEE Trans Neural Netw Learn Syst 28(10):2233-2242
23.
go back to reference Gou J, Hou B, Ou W, Mao Q, Yang H, Liu Y (2019) Several robust extensions of collaborative representation for image classification. Neurocomputing 348:120–133CrossRef Gou J, Hou B, Ou W, Mao Q, Yang H, Liu Y (2019) Several robust extensions of collaborative representation for image classification. Neurocomputing 348:120–133CrossRef
24.
go back to reference Chao Y, Yeh Y, Chen Y, Lee Y, Wang Y (2011) Locality-constrained group sparse representation for robust face recognition. IEEE international conference on image processing (ICIP), pp 761–764 Chao Y, Yeh Y, Chen Y, Lee Y, Wang Y (2011) Locality-constrained group sparse representation for robust face recognition. IEEE international conference on image processing (ICIP), pp 761–764
25.
go back to reference Tang X, Feng G, Cai J (2014) Weighted group sparse representation for undersampled face recognition. Neurocomputing 145:402–415CrossRef Tang X, Feng G, Cai J (2014) Weighted group sparse representation for undersampled face recognition. Neurocomputing 145:402–415CrossRef
26.
go back to reference Keinert F, Lazzaro D, Morigi S (2019) A robust group-sparse representation variational method with applications to face recognition. IEEE Trans Image Process 28(6):2785–2798MathSciNetCrossRef Keinert F, Lazzaro D, Morigi S (2019) A robust group-sparse representation variational method with applications to face recognition. IEEE Trans Image Process 28(6):2785–2798MathSciNetCrossRef
27.
go back to reference Lin S, Kung S, Lin L (1997) Face recognition/detection by probabilistic decision-based neural network. IEEE Trans Neural Netw 8(1):114–132CrossRef Lin S, Kung S, Lin L (1997) Face recognition/detection by probabilistic decision-based neural network. IEEE Trans Neural Netw 8(1):114–132CrossRef
28.
go back to reference Aitkenhead MJ, Mcdonald AJS (2003) A neural network face recognition system. Eng Appl Artif Intell 16(3):167–176CrossRef Aitkenhead MJ, Mcdonald AJS (2003) A neural network face recognition system. Eng Appl Artif Intell 16(3):167–176CrossRef
29.
go back to reference Szu H, Kopriva I (2001) Artificial neural networks for noisy image super-resolution. Opt Commun 198(1):71–81CrossRef Szu H, Kopriva I (2001) Artificial neural networks for noisy image super-resolution. Opt Commun 198(1):71–81CrossRef
30.
go back to reference Chen D, Li S, Lin F, Wu Q (2019) New super-twisting zeroing neural-dynamics model for tracking control of parallel robots: a finite-time and robust solution. IEEE Trans Syst Man Cybern 1–10 Chen D, Li S, Lin F, Wu Q (2019) New super-twisting zeroing neural-dynamics model for tracking control of parallel robots: a finite-time and robust solution. IEEE Trans Syst Man Cybern 1–10
31.
go back to reference Chen D, Li S, Wu Q, Luo X (2020) New disturbance rejection constraint for redundant robot manipulators: an optimization perspective. IEEE Trans Ind Inf 16(4):2221–2232CrossRef Chen D, Li S, Wu Q, Luo X (2020) New disturbance rejection constraint for redundant robot manipulators: an optimization perspective. IEEE Trans Ind Inf 16(4):2221–2232CrossRef
32.
go back to reference Nene SA, Nayar SK, Murase H (1996) Columbia object image library (COIL-20). Technical Report CUCS-005-96 Nene SA, Nayar SK, Murase H (1996) Columbia object image library (COIL-20). Technical Report CUCS-005-96
33.
go back to reference Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: IEEE workshop on applications of computer vision, pp 138–142 Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: IEEE workshop on applications of computer vision, pp 138–142
35.
go back to reference Gross R, Matthews I, Cohn JF, Kanade T, Baker S (2010) Multi-PIE. Image Vis Comput 28(5):807–813CrossRef Gross R, Matthews I, Cohn JF, Kanade T, Baker S (2010) Multi-PIE. Image Vis Comput 28(5):807–813CrossRef
36.
go back to reference Goel N, Bebi G, Nefian AV (2005) Face recognition experiments with random projection. In: Proc of the Spie, pp 426–437 Goel N, Bebi G, Nefian AV (2005) Face recognition experiments with random projection. In: Proc of the Spie, pp 426–437
37.
go back to reference Learned-Miller E, Huang GB, Roychowdhury A, Li H, Hua G (2016) Labeled faces in the wild: a survey. Advances in face detection and facial image analysis, pp 189–248 Learned-Miller E, Huang GB, Roychowdhury A, Li H, Hua G (2016) Labeled faces in the wild: a survey. Advances in face detection and facial image analysis, pp 189–248
38.
go back to reference Yao B, Jiang X, Khosla A, Lin A L, Li FF (2011) Human action recognition by learning bases of action attributes and parts. In: IEEE international conference on computer vision, pp 1331–1338 Yao B, Jiang X, Khosla A, Lin A L, Li FF (2011) Human action recognition by learning bases of action attributes and parts. In: IEEE international conference on computer vision, pp 1331–1338
39.
go back to reference Nilsback ME, Zisserman A (2008) Automated flower classification over a large number of classes. In: Sixth Indian conference on computer vision, graphics and image processing, pp 16–19 Nilsback ME, Zisserman A (2008) Automated flower classification over a large number of classes. In: Sixth Indian conference on computer vision, graphics and image processing, pp 16–19
40.
go back to reference Lee K, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698CrossRef Lee K, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698CrossRef
41.
go back to reference Chen Z, Wu X, Yin H, Kittler J (2019) Low-rank discriminative least squares regression for image classification. arXiv: Computer Vision and Pattern Recognition Chen Z, Wu X, Yin H, Kittler J (2019) Low-rank discriminative least squares regression for image classification. arXiv:​ Computer Vision and Pattern Recognition
42.
go back to reference Xu J, An W, Zhang L, Zhang D (2019) Sparse, collaborative, or nonnegative representation: Which helps pattern classification? Pattern Recogn 88:679–688CrossRef Xu J, An W, Zhang L, Zhang D (2019) Sparse, collaborative, or nonnegative representation: Which helps pattern classification? Pattern Recogn 88:679–688CrossRef
43.
go back to reference Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv: Computer Vision and Pattern Recognition Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:​ Computer Vision and Pattern Recognition
44.
go back to reference Sharma G, Jurie F, Schmid C (2013) Expanded parts model for human attribute and action recognition in still images. In: Computer vision and pattern recognition, pp 652–656 Sharma G, Jurie F, Schmid C (2013) Expanded parts model for human attribute and action recognition in still images. In: Computer vision and pattern recognition, pp 652–656
45.
go back to reference Khan FS, Xu J, De Weijer JV, Bagdanov AD, Anwer RM, Lopez AM (2015) Recognizing actions through action-specific person detection. IEEE Trans Image Process 24(11):4422–4432MathSciNetCrossRef Khan FS, Xu J, De Weijer JV, Bagdanov AD, Anwer RM, Lopez AM (2015) Recognizing actions through action-specific person detection. IEEE Trans Image Process 24(11):4422–4432MathSciNetCrossRef
46.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Neural information processing systems, pp 1097–1105
47.
go back to reference Chai Y, Lempitsky V, Zisserman A (2011) BiCoS: a bi-level co-segmentation method for image classification. In: 2011 International conference on computer vision, pp 2579–2586 Chai Y, Lempitsky V, Zisserman A (2011) BiCoS: a bi-level co-segmentation method for image classification. In: 2011 International conference on computer vision, pp 2579–2586
48.
go back to reference Angelova A, Zhu S (2013) Efficient object detection and segmentation for fine-grained recognition. In: Computer vision and pattern recognition, pp 811–818 Angelova A, Zhu S (2013) Efficient object detection and segmentation for fine-grained recognition. In: Computer vision and pattern recognition, pp 811–818
49.
go back to reference Murray N, Perronnin F (2014) Generalized max pooling. In: 2014 IEEE conference on computer vision and pattern recognition, pp 2473–2480 Murray N, Perronnin F (2014) Generalized max pooling. In: 2014 IEEE conference on computer vision and pattern recognition, pp 2473–2480
50.
go back to reference Razavia AS, Azizpour H, Sullivan J, Carlsson S (2014) CNN Features off-the-shelf: an Astounding Baseline for Recognition. In: 2014 IEEE conference on computer vision and pattern recognition workshops, pp 512–519 Razavia AS, Azizpour H, Sullivan J, Carlsson S (2014) CNN Features off-the-shelf: an Astounding Baseline for Recognition. In: 2014 IEEE conference on computer vision and pattern recognition workshops, pp 512–519
51.
go back to reference Simon M, Rodner E (2015) Neural activation constellations: unsupervised part model discovery with convolutional networks. In: 2015 IEEE international conference on computer vision (ICCV), pp 1143–1151 Simon M, Rodner E (2015) Neural activation constellations: unsupervised part model discovery with convolutional networks. In: 2015 IEEE international conference on computer vision (ICCV), pp 1143–1151
Metadata
Title
Weighted Discriminative Sparse Representation for Image Classification
Authors
Zhen Liu
Xiao-Jun Wu
Zhenqiu Shu
Hefeng Yin
Zhe Chen
Publication date
28-03-2021
Publisher
Springer US
Published in
Neural Processing Letters / Issue 3/2021
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10489-8

Other articles of this Issue 3/2021

Neural Processing Letters 3/2021 Go to the issue