Skip to main content
Top

2019 | OriginalPaper | Chapter

14. Weyl Asymptotics for the Damped Wave Equation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The damped wave equation is closely related to non-self-adjoint perturbations of a self-adjoint operator P of the form
$$\displaystyle P_\epsilon =P+i\epsilon Q. $$
Here, P is a semi-classical pseudodifferential operator of order 0 on L 2(X), where we consider two cases:
  • X = R n and P has the symbol P ∼ p(x, ξ) + hp 1(x, ξ) + ⋯ . in S(m), as in Sect. 6.​1, where the description is valid also in the case n > 1. We assume for simplicity that the order function m(x, ξ) tends to + , when (x, ξ) tends to . We also assume that P is formally self-adjoint. Then by elliptic theory (and the ellipticity assumption on P) we know that P is essentially self-adjoint with purely discrete spectrum.
  • X is a compact smooth manifold with positive smooth volume form dx and P is a formally self-adjoint differential operator, which in local coordinates takes the form,
    $$\displaystyle P=\sum _{|\alpha |\le m}a_\alpha (x;h)(hD_x)^\alpha ,\ m>0 $$
    where \(a_\alpha (x;h)\sim \sum _{k=0}^\infty h^ka_{\alpha ,k}(x)\) in C and the “classical” principal symbol
    $$\displaystyle p_m(x,\xi )=\sum _{|\alpha |=m}a_{\alpha ,0} (x)\xi ^\alpha , $$
    satisfies
    $$\displaystyle 0\le p_m(x,\xi )\asymp |\xi |{ }^m , $$
    so m has to be even. In this case the semi-classical principal symbol is given by
    $$\displaystyle p(x,\xi )=\sum _{|\alpha |\le m}a_{\alpha ,0} (x)\xi ^\alpha . $$

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
(Pz 0)−1 Q is also compact: \({\mathcal {D}}(P)\to {\mathcal {D}}(P)\) since it is related to Q(Pz 0)−1 : L 2 → L 2 by conjugation with P − z 0.
 
Literature
41.
go back to reference M. Dimassi, J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Note Series, vol. 268 (Cambridge University Press, Cambridge, 1999) M. Dimassi, J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Note Series, vol. 268 (Cambridge University Press, Cambridge, 1999)
51.
go back to reference A. Grigis, J. Sjöstrand, Microlocal Analysis for Differential Operators. London Mathematical Society Lecture Notes Series, vol. 196 (Cambridge University Press, Cambridge, 1994) A. Grigis, J. Sjöstrand, Microlocal Analysis for Differential Operators. London Mathematical Society Lecture Notes Series, vol. 196 (Cambridge University Press, Cambridge, 1994)
66.
go back to reference M. Hitrik, Eigenfrequencies and expansions for damped wave equations. Methods Appl. Anal. 10(4), 543–564 (2003)MathSciNetMATH M. Hitrik, Eigenfrequencies and expansions for damped wave equations. Methods Appl. Anal. 10(4), 543–564 (2003)MathSciNetMATH
92.
go back to reference G. Lebeau, Equation des ondes amorties. Algebraic and Geometric Methods in Mathematical Physics (Kaciveli, 1993), pp. 73–109. Mathematical Physics Studies, vol. 19 (Kluwer Academic Publishers, Dordrecht, 1996)CrossRef G. Lebeau, Equation des ondes amorties. Algebraic and Geometric Methods in Mathematical Physics (Kaciveli, 1993), pp. 73–109. Mathematical Physics Studies, vol. 19 (Kluwer Academic Publishers, Dordrecht, 1996)CrossRef
96.
go back to reference A.S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Translated from the Russian by H.H. McFaden. Translation ed. by B. Silver. With an appendix by M.V. Keldysh. Translations of Mathematical Monographs, vol. 71 (American Mathematical Society, Providence, 1988) A.S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Translated from the Russian by H.H. McFaden. Translation ed. by B. Silver. With an appendix by M.V. Keldysh. Translations of Mathematical Monographs, vol. 71 (American Mathematical Society, Providence, 1988)
97.
go back to reference A.S. Markus, V.I. Matseev, Asymptotic behavior of the spectrum of close-to-normal operators. Funktsional. Anal. i Prilozhen. 13(3), 93–94 (1979), Functional Anal. Appl. 13(3), 233–234 (1979) (1980) A.S. Markus, V.I. Matseev, Asymptotic behavior of the spectrum of close-to-normal operators. Funktsional. Anal. i Prilozhen. 13(3), 93–94 (1979), Functional Anal. Appl. 13(3), 233–234 (1979) (1980)
118.
go back to reference G. Rivière, Delocalization of slowly damped eigenmodes on Anosov manifolds. Commun. Math. Phys. 316(2), 555–593 (2012)MathSciNetCrossRef G. Rivière, Delocalization of slowly damped eigenmodes on Anosov manifolds. Commun. Math. Phys. 316(2), 555–593 (2012)MathSciNetCrossRef
134.
go back to reference J. Sjöstrand, Asymptotic distribution of eigenfrequencies for damped wave equations. Publ. RIMS Kyoto Univ. 36(5), 573–611 (2000)MathSciNetCrossRef J. Sjöstrand, Asymptotic distribution of eigenfrequencies for damped wave equations. Publ. RIMS Kyoto Univ. 36(5), 573–611 (2000)MathSciNetCrossRef
Metadata
Title
Weyl Asymptotics for the Damped Wave Equation
Author
Johannes Sjöstrand
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-10819-9_14

Premium Partner