Skip to main content
Top

2015 | OriginalPaper | Chapter

5. What Is Space?

Author : Jürgen Jost

Published in: Mathematical Concepts

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

How can the notion of space be conceptualized and formalized? What is the space that we are living in? In this chapter, we discuss the concepts of a manifold (including an introduction to Riemannian geometry), a simplicial complex and a scheme as possible answers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Let us recall the definition of a holomorphic map. On \({\mathbb C}^d\), we use complex coordinates \(z^1=x^1+ iy^1,\dots ,z^d=x^d + iy^d\). A complex function \(h:U \rightarrow {\mathbb C}\) where U is an open subset of \({\mathbb C}^d\), is called holomorphic if \(\frac{\bar{\partial } h}{\partial \bar{z}^{k}}:=\frac{1}{2}(\frac{{\partial } h}{\partial x^{k}} +i \frac{{\partial } h}{\partial y^{k}})=0\) for \(k=1,\dots ,d\), and a map \(H:U \rightarrow {\mathbb C}^m\) is then holomorphic if all its components are. We do not want to go into the details of complex analysis here, and we refer the reader to [58] for more details about complex manifolds.
 
2
The epithet “continuous” is used here only for emphasis, as all curves are implicitly assumed to be continuous.
 
3
This theorem says that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares. See [75], p.577.
 
4
For the present discussion, other rings would do as well, but we stick to \({\mathbb R}\) here for concreteness. \({\mathbb C}\) will become important below.
 
5
In complex and algebraic geometry, there is a way to circumvent this problem, namely, to look at meromorphic functions, that is, also for functions assuming the value \(\infty \) in a controlled manner.
 
Metadata
Title
What Is Space?
Author
Jürgen Jost
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-20436-9_5

Premium Partner