Skip to main content
Top
Published in: Energy Efficiency 5/2016

01-10-2016 | Original Article

Which factors drive CO2 emissions in EU-15? Decomposition and innovative accounting

Authors: Victor Moutinho, Mara Madaleno, Pedro Miguel Silva

Published in: Energy Efficiency | Issue 5/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study breaks down carbon emissions into six effects within the 15 European Union countries group (EU-15) and analyses their evolution in four distinct periods: 1995–2000 (before European directive 2001/77/EC), 2001–2004 (after European directive 2001/77/EC and before Kyoto), 2005–2007 (after Kyoto implementation), and 2008–2010 (after Kyoto first stage), to determine which of them had more impact in the intensity of emissions. The complete decomposition technique was used to examine the carbon dioxide (CO2) emissions and its components: carbon intensity (CI effect); changes in fossil fuels consumption towards total energy consumption (EM effect); changes in energy intensity effect (EG effect); the average renewable capacity productivity (GC effect); the change in capacity of renewable energy per capita (CP effect); and the change in population (P effect). It is shown that in the post Kyoto period there is an even greater differential in the negative changes in CO2 emissions, which were caused by the negative contribution of the intensity variations of the effects EM, GC, CP and P that exceeded the positive changes occurred in CI and EG effects. It is also important to stress the fluctuations in CO2 variations before and after Kyoto, turning positive changes to negative changes, especially in France, Italy and Spain, revealing the presence of heterogeneity. Moreover, the positive effect of renewable capacity per capita and the negative effect of renewable capacity productivity are the main factors influencing the reduction in CO2 emissions during the Kyoto first stage. It is possible to infer from the results that one of the ways to reduce emissions intensity will be by increasing the renewable capacity and the productivity in energy generation and consequently through the reduction of the share of the consumption of fossil fuels.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Such as the highest levels of energy intensity for Netherlands and Slovakia recorded in the second phase of the 2008–2012 Kyoto periods, whereas Luxembourg and Slovenia show the lowest levels of energy intensity and to a lesser extent Latvia, Austria, Germany and Italy.
 
2
In Ireland, Luxembourg, and Spain the population density increased by 21, 17, and 14 %, respectively, while in most of other member states the population density increased while Netherlands and Belgium emerge as the countries with the largest levels of population density.
 
Literature
go back to reference Achão, C., & Schaeffer, R. (2009). Decomposition analysis of the variations in residential electricity consumption in Brazil for the 1980–2007 period: Measuring the activity, intensity and structure effects. Energy Policy, 37(12), 5208–5220. doi:10.1016/j.enpol.2009.07.043.CrossRef Achão, C., & Schaeffer, R. (2009). Decomposition analysis of the variations in residential electricity consumption in Brazil for the 1980–2007 period: Measuring the activity, intensity and structure effects. Energy Policy, 37(12), 5208–5220. doi:10.​1016/​j.​enpol.​2009.​07.​043.CrossRef
go back to reference Alam, M., Begum, I., Buysse, J., Rahman, S., & Huylenbroeck, G. (2011). Dynamic modeling of causal relationship between energy consumption, CO2 emissions and economic growth in India. Renewable and Sustainable Energy Reviews, 15(6), 3243–3251. doi:10.1016/j.rser.2011.04.029.CrossRef Alam, M., Begum, I., Buysse, J., Rahman, S., & Huylenbroeck, G. (2011). Dynamic modeling of causal relationship between energy consumption, CO2 emissions and economic growth in India. Renewable and Sustainable Energy Reviews, 15(6), 3243–3251. doi:10.​1016/​j.​rser.​2011.​04.​029.CrossRef
go back to reference Alcántara, V. E., & Padilla, E. R. (2005). Análisis de las emisiones de CO2 y sus factores explicativos en las diferentes áreas del mundo. Revista de Economía Crítica, Asociación de Economía Crítica, 4, 17–37. Alcántara, V. E., & Padilla, E. R. (2005). Análisis de las emisiones de CO2 y sus factores explicativos en las diferentes áreas del mundo. Revista de Economía Crítica, Asociación de Economía Crítica, 4, 17–37.
go back to reference Ang, B. W. (1995). Decomposition methodology in industrial energy demand analysis. Energy, 20(11), 1081–1095.CrossRef Ang, B. W. (1995). Decomposition methodology in industrial energy demand analysis. Energy, 20(11), 1081–1095.CrossRef
go back to reference Ang, B. W., & Pandiyan, G. (1997). Decomposition of energy-induced CO2 emissions in manufacturing. Energy Economics, 19(3), 363–374.CrossRef Ang, B. W., & Pandiyan, G. (1997). Decomposition of energy-induced CO2 emissions in manufacturing. Energy Economics, 19(3), 363–374.CrossRef
go back to reference Ang, B. W., & Zhang, F. (1999). Inter-regional comparisons of energy-related CO2 emissions using the decomposition technique. Energy, 24(4), 297–305.CrossRef Ang, B. W., & Zhang, F. (1999). Inter-regional comparisons of energy-related CO2 emissions using the decomposition technique. Energy, 24(4), 297–305.CrossRef
go back to reference Ang, B. W., & Zhang, F. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12), 1149–1176.CrossRef Ang, B. W., & Zhang, F. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12), 1149–1176.CrossRef
go back to reference Ang, B. W., Liu, F., & Chew, E. (2003). Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 31, 1561–1566.CrossRef Ang, B. W., Liu, F., & Chew, E. (2003). Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 31, 1561–1566.CrossRef
go back to reference Ang, B. W., & Choi, K. H. (1997). Decomposition of aggregate energy and gas emission intensities for industry: a refined divisia index method. Energy Journal, 18(3), 59–73.CrossRef Ang, B. W., & Choi, K. H. (1997). Decomposition of aggregate energy and gas emission intensities for industry: a refined divisia index method. Energy Journal, 18(3), 59–73.CrossRef
go back to reference Ang, B. W., & Xu, X. Y. (2013). Tracking industrial energy efficiency trends using index decomposition analysis. Energy Economics, 40, 1014–1021.CrossRef Ang, B. W., & Xu, X. Y. (2013). Tracking industrial energy efficiency trends using index decomposition analysis. Energy Economics, 40, 1014–1021.CrossRef
go back to reference Bartoletto, S., & Rubio, M. (2008). Energy transition and CO2 emissions in southern Europe: Italy and Spain (1861–2000). Global Environment, 2, 46–81. Bartoletto, S., & Rubio, M. (2008). Energy transition and CO2 emissions in southern Europe: Italy and Spain (1861–2000). Global Environment, 2, 46–81.
go back to reference Bhattacharyya, S. C., & Matsumura, W. (2010). Changes in the GHG emission intensity in EU-15: lessons from a decomposition analysis. Energy, 35, 3315–3322.CrossRef Bhattacharyya, S. C., & Matsumura, W. (2010). Changes in the GHG emission intensity in EU-15: lessons from a decomposition analysis. Energy, 35, 3315–3322.CrossRef
go back to reference Brizga, J., Feng, K., & Hubacek, K. (2013). Drivers of CO 2 emissions in the former soviet union: a country level IPAT analysis from 1990 to 2010. Energy, 59, 743–753.CrossRef Brizga, J., Feng, K., & Hubacek, K. (2013). Drivers of CO 2 emissions in the former soviet union: a country level IPAT analysis from 1990 to 2010. Energy, 59, 743–753.CrossRef
go back to reference Camarero, M., Castillo-Giménez, J., Picazo-Tadeo, A. J., & Tamarit, C. (2014). Is eco-efficiency in greenhouse gas emissions converging among European Union countries? Empirical Economics, 47, 143–168.CrossRef Camarero, M., Castillo-Giménez, J., Picazo-Tadeo, A. J., & Tamarit, C. (2014). Is eco-efficiency in greenhouse gas emissions converging among European Union countries? Empirical Economics, 47, 143–168.CrossRef
go back to reference Commission of the European Communities. (2008). Communication from the Commission to the European Parliament, the Council, the European Economics and Social Committee and the Committee of the Regions. Commission of the European Communities. (2008). Communication from the Commission to the European Parliament, the Council, the European Economics and Social Committee and the Committee of the Regions.
go back to reference Dittmar, M. (2012). Nuclear energy: status and future limitations. Energy, 37(1), 35–40.CrossRef Dittmar, M. (2012). Nuclear energy: status and future limitations. Energy, 37(1), 35–40.CrossRef
go back to reference Dursun, B., & Alboyaci, B. (2010). The contribution of wind-hydro pumped storage systems in meeting Turkey’s electric energy demand. Renewable and Sustainable Energy Review, 7, 1979–1988.CrossRef Dursun, B., & Alboyaci, B. (2010). The contribution of wind-hydro pumped storage systems in meeting Turkey’s electric energy demand. Renewable and Sustainable Energy Review, 7, 1979–1988.CrossRef
go back to reference Ebohon, O. J., & Ikeme, A. J. (2006). Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries. Energy Policy, 34(18), 3599–3611. doi:10.1016/j.enpol.2004.10.012. Ebohon, O. J., & Ikeme, A. J. (2006). Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries. Energy Policy, 34(18), 3599–3611. doi:10.​1016/​j.​enpol.​2004.​10.​012.
go back to reference European Commission (2014). Energy Economic Developments in Europe, European Economy Series, 1/2014. European Commission (2014). Energy Economic Developments in Europe, European Economy Series, 1/2014.
go back to reference European Union. (2001). Directive 2001/77/EC of the European parliament and of the council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market. European Union. (2001). Directive 2001/77/EC of the European parliament and of the council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market.
go back to reference European Union. (2003). Directive 2003/30/EC of the European parliament and of the council of 8 may 2003 on the promotion of the use of biofuels or other renewable fuels for transport. European Union. (2003). Directive 2003/30/EC of the European parliament and of the council of 8 may 2003 on the promotion of the use of biofuels or other renewable fuels for transport.
go back to reference European Union. (2009). Decision no 406/2009/EC of the European parliament and of the council of 23 April 2009 on the effort of member states to reduce their greenhouse gas emissions to meet the community’s greenhouse gas emission reduction commitments up to 2020. European Union. (2009). Decision no 406/2009/EC of the European parliament and of the council of 23 April 2009 on the effort of member states to reduce their greenhouse gas emissions to meet the community’s greenhouse gas emission reduction commitments up to 2020.
go back to reference Eurostat. (2012). Environment and Energy. Retrieved from http//:ec.europa.eu/eurostat Eurostat. (2012). Environment and Energy. Retrieved from http//:ec.europa.eu/eurostat
go back to reference G-20 Clean energy Factbook (2010). Who’s winning the clean energy race? - Growth. The Pew Charitable Trusts: Competition and Opportunity in the World’s Largest Economies. G-20 Clean energy Factbook (2010). Who’s winning the clean energy race? - Growth. The Pew Charitable Trusts: Competition and Opportunity in the World’s Largest Economies.
go back to reference Gales, B., Kander, A., Malanima, P., & Rubio, M. (2007). North versus south: energy transition and energy intensity in Europe over 200 years. European Review of Economic History, 11(2), 219–253.CrossRef Gales, B., Kander, A., Malanima, P., & Rubio, M. (2007). North versus south: energy transition and energy intensity in Europe over 200 years. European Review of Economic History, 11(2), 219–253.CrossRef
go back to reference González, P. F., Landajo, M., & Presno, M. J. (2014a). The driving forces behind changes in CO2 emission levels in EU-27. Differences between member states. Environmental Science & Policy, 38, 11–16. doi:10.1016/j.envsci.2013.10.007. González, P. F., Landajo, M., & Presno, M. J. (2014a). The driving forces behind changes in CO2 emission levels in EU-27. Differences between member states. Environmental Science & Policy, 38, 11–16. doi:10.​1016/​j.​envsci.​2013.​10.​007.
go back to reference González, P. F., Landajo, M., & Presno, M. J. (2014b). Tracking European Union CO2 emissions through LDMI (logarithmic-mean divisia índex) decomposition. The activity Revaluation approach. Energy, 73, 741–750. doi:10.1016/j.enpol.2005.02.005. González, P. F., Landajo, M., & Presno, M. J. (2014b). Tracking European Union CO2 emissions through LDMI (logarithmic-mean divisia índex) decomposition. The activity Revaluation approach. Energy, 73, 741–750. doi:10.​1016/​j.​enpol.​2005.​02.​005.
go back to reference Greening, L. A., Davis, W. B., Schipper, L., & Khrushch, M. (1997). Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries. Energy Economics, 19(3), 375–390.CrossRef Greening, L. A., Davis, W. B., Schipper, L., & Khrushch, M. (1997). Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries. Energy Economics, 19(3), 375–390.CrossRef
go back to reference Greening, L. A., Davis, W., & Schipper, L. (1998). Decomposition of aggregate carbon intensity for the manufacturing sector: comparison of declining trends from 10 OECD countries for the period 1971–1991. Energy Economics, 13(3), 43–65.CrossRef Greening, L. A., Davis, W., & Schipper, L. (1998). Decomposition of aggregate carbon intensity for the manufacturing sector: comparison of declining trends from 10 OECD countries for the period 1971–1991. Energy Economics, 13(3), 43–65.CrossRef
go back to reference Halamay, D.A. and Brekken, T.K.A. (2011). Monte Carlo analysis of the impacts of high renewable power penetration. Energy Conversion Congress and Exposition (ECCE), −IEEE, 3059–3066. Halamay, D.A. and Brekken, T.K.A. (2011). Monte Carlo analysis of the impacts of high renewable power penetration. Energy Conversion Congress and Exposition (ECCE), −IEEE, 3059–3066.
go back to reference Hatzigeorgiou, E., Polatidis, H., & Haralambopoulos, D. (2008). CO 2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques. Energy, 33(3), 492–499. doi:10.1016/j.energy.2007.09.014.CrossRef Hatzigeorgiou, E., Polatidis, H., & Haralambopoulos, D. (2008). CO 2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques. Energy, 33(3), 492–499. doi:10.​1016/​j.​energy.​2007.​09.​014.CrossRef
go back to reference Hatzigeorgiou, E., Polatidis, H., & Haralambopoulos, D. (2010). Energy CO2 emissions for 1990–2020: a decomposition analysis for EU-25 and Greece. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(20), 1908–1917. doi:10.1080/15567030902937101.CrossRef Hatzigeorgiou, E., Polatidis, H., & Haralambopoulos, D. (2010). Energy CO2 emissions for 1990–2020: a decomposition analysis for EU-25 and Greece. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(20), 1908–1917. doi:10.​1080/​1556703090293710​1.CrossRef
go back to reference Hoekstra, R., & Bergh, J. J. C. J. M. V. D. (2003). Comparing structural and index decomposition analysis. Energy Economics, 25(1), 39–64.CrossRef Hoekstra, R., & Bergh, J. J. C. J. M. V. D. (2003). Comparing structural and index decomposition analysis. Energy Economics, 25(1), 39–64.CrossRef
go back to reference Howarth, R., Schipper, L., Duerr, P., & Strøm, S. (1991). Manufacturing energy use in eight OECD countries: decomposing the impacts of changes in output, industry structure and energy intensity. Energy Economics, 13(2), 135–142.CrossRef Howarth, R., Schipper, L., Duerr, P., & Strøm, S. (1991). Manufacturing energy use in eight OECD countries: decomposing the impacts of changes in output, industry structure and energy intensity. Energy Economics, 13(2), 135–142.CrossRef
go back to reference Intergovernamental Panel on Climate Change. (2000). IPCC Special Report Emissions Scenarios. Intergovernamental Panel on Climate Change. (2000). IPCC Special Report Emissions Scenarios.
go back to reference International Energy Agency (2012b). IEA statistics electricity information 2012. Paris. International Energy Agency (2012b). IEA statistics electricity information 2012. Paris.
go back to reference International Energy Agency. (2012b). World Energy Outlook 2012a. International Energy Agency. (2012b). World Energy Outlook 2012a.
go back to reference International Energy Agency (2013). Energy statistics 2013. Paris. International Energy Agency (2013). Energy statistics 2013. Paris.
go back to reference International Panel on Climate Change (2007). Climate change 2007 synthesis report. Geneva. International Panel on Climate Change (2007). Climate change 2007 synthesis report. Geneva.
go back to reference Kabouris, J., & Kanellos, F. (2010). Impacts of large scale wind penetration on designing and operation of electric power systems. IEEE Transactions on Sustainable Energy, 1(2), 107–114.CrossRef Kabouris, J., & Kanellos, F. (2010). Impacts of large scale wind penetration on designing and operation of electric power systems. IEEE Transactions on Sustainable Energy, 1(2), 107–114.CrossRef
go back to reference Kander, A., Malanima, P., & Warde, P. (2013). Power to the people. Energy in Europe over the last five centuries. Princeton: Princeton University Press. Kander, A., Malanima, P., & Warde, P. (2013). Power to the people. Energy in Europe over the last five centuries. Princeton: Princeton University Press.
go back to reference Liaskas, K., Mavrotas, G., Mandaraka, M., & Diakoulaki, D. U. (2000). Decomposition of industrial CO2 emissions: the case of European Union. Energy Economics, 22(4), 383–394.CrossRef Liaskas, K., Mavrotas, G., Mandaraka, M., & Diakoulaki, D. U. (2000). Decomposition of industrial CO2 emissions: the case of European Union. Energy Economics, 22(4), 383–394.CrossRef
go back to reference Lin, B., & Moubarak, M. (2013). Decomposition analysis: change of carbon dioxide emissions in the Chinese textile industry. Renewable and Sustainable Energy Reviews, 26, 389–396.CrossRef Lin, B., & Moubarak, M. (2013). Decomposition analysis: change of carbon dioxide emissions in the Chinese textile industry. Renewable and Sustainable Energy Reviews, 26, 389–396.CrossRef
go back to reference Lindmark, M. (2002). An EKC-pattern in historical perspective: carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870–1997. Ecological Economics, 42(1–2), 333–347.CrossRef Lindmark, M. (2002). An EKC-pattern in historical perspective: carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870–1997. Ecological Economics, 42(1–2), 333–347.CrossRef
go back to reference Luukkanen, J., & Kaivo-oja, J. (2002). Meaningful participation in global climate policy? Comparative analysis of the energy and CO2 efficiency dynamics of key developing countries. Global Environmental Change, 12(2), 117–126.CrossRef Luukkanen, J., & Kaivo-oja, J. (2002). Meaningful participation in global climate policy? Comparative analysis of the energy and CO2 efficiency dynamics of key developing countries. Global Environmental Change, 12(2), 117–126.CrossRef
go back to reference Maghyereh, A. (2004). Oil price shocks and emerging stock markets: a generalized VAR approach. International Journal of Applied Econometrics and Quantitative Studies, 1(2), 27–40. Maghyereh, A. (2004). Oil price shocks and emerging stock markets: a generalized VAR approach. International Journal of Applied Econometrics and Quantitative Studies, 1(2), 27–40.
go back to reference Factbook, O. E. C. D. (2013). Economic. Environment and Social: Statistics. Factbook, O. E. C. D. (2013). Economic. Environment and Social: Statistics.
go back to reference Picazo-Tadeo, A. J., Castillo-Giménez, J., & Beltrán-Esteve, M. (2014). An intertemporal approach to measuring environmental performance with directional distance functions: greenhouse gas emissions in the European Union. Ecological Economics, 100, 173–182.CrossRef Picazo-Tadeo, A. J., Castillo-Giménez, J., & Beltrán-Esteve, M. (2014). An intertemporal approach to measuring environmental performance with directional distance functions: greenhouse gas emissions in the European Union. Ecological Economics, 100, 173–182.CrossRef
go back to reference Raupach, M., Marland, G., Ciais, P., Le Quéré, C., Canadell, J., Klepper, G., & Field, C. (2007). Global and regional drivers of accelerating CO2 emissions. In W. C. Clark, Harvard University, & Cambridge MA (Eds.), Proceedings of the National Academy of Sciences of the United States of America (pp. 10288–10293). doi:www.pnas.org/cgi/doi/10.1073/pnas.0700609104 Raupach, M., Marland, G., Ciais, P., Le Quéré, C., Canadell, J., Klepper, G., & Field, C. (2007). Global and regional drivers of accelerating CO2 emissions. In W. C. Clark, Harvard University, & Cambridge MA (Eds.), Proceedings of the National Academy of Sciences of the United States of America (pp. 10288–10293). doi:www.​pnas.​org/​cgi/​doi/​10.​1073/​pnas.​0700609104
go back to reference Rose, A., & Casler, S. (1996). Input-output structural decomposition analysis: a critical appraisal. Economic Systems Research, 8(1), 33–62.CrossRef Rose, A., & Casler, S. (1996). Input-output structural decomposition analysis: a critical appraisal. Economic Systems Research, 8(1), 33–62.CrossRef
go back to reference Schipper, L., Murtishaw, S., Khrushch, M., Ting, M., Karbuz, S., & Unander, F. (2001). Carbon emissions from manufacturing energy use in 13 IEA countries: long-term trends through 1995. Energy Policy, 29(9), 667–688.CrossRef Schipper, L., Murtishaw, S., Khrushch, M., Ting, M., Karbuz, S., & Unander, F. (2001). Carbon emissions from manufacturing energy use in 13 IEA countries: long-term trends through 1995. Energy Policy, 29(9), 667–688.CrossRef
go back to reference Sun, J. W. (1998). Changes in energy consumption and energy intensity: a complete decomposition model. Energy Economics, 20(1), 85–100.CrossRef Sun, J. W. (1998). Changes in energy consumption and energy intensity: a complete decomposition model. Energy Economics, 20(1), 85–100.CrossRef
go back to reference Sun, J. W. (1999). Decomposition of aggregate CO2 emissions in the OECD: 1960–1995. The Energy Journal, 20(3), 147–155.CrossRef Sun, J. W. (1999). Decomposition of aggregate CO2 emissions in the OECD: 1960–1995. The Energy Journal, 20(3), 147–155.CrossRef
go back to reference Sun, J. W. (2000). Is CO2 emission intensity comparable? Energy Policy, 28(15), 1081–1084.CrossRef Sun, J. W. (2000). Is CO2 emission intensity comparable? Energy Policy, 28(15), 1081–1084.CrossRef
go back to reference Timilsina, G., & Shrestha, A. (2009). Factors affecting transport sector CO2 emissions growth in Latin American and Caribbean countries: an LMDI decomposition analysis. International Journal of Energy Research, 33(4), 396–414. doi:10.1002/er.CrossRef Timilsina, G., & Shrestha, A. (2009). Factors affecting transport sector CO2 emissions growth in Latin American and Caribbean countries: an LMDI decomposition analysis. International Journal of Energy Research, 33(4), 396–414. doi:10.​1002/​er.CrossRef
go back to reference Tol, R., Pacala, S., & Socolow, R. (2009). Understanding long-term energy use and carbon dioxide emissions in the USA. Journal of Policy Modelling, 31(3), 425–445.CrossRef Tol, R., Pacala, S., & Socolow, R. (2009). Understanding long-term energy use and carbon dioxide emissions in the USA. Journal of Policy Modelling, 31(3), 425–445.CrossRef
go back to reference Torvanger, A. (1991). Manufacturing sector carbon dioxide emissions in nine OECD countries, 1973–87: a divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities and international structure. Energy Economics, 13(3), 168–186.CrossRef Torvanger, A. (1991). Manufacturing sector carbon dioxide emissions in nine OECD countries, 1973–87: a divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities and international structure. Energy Economics, 13(3), 168–186.CrossRef
go back to reference Unander, F., Karbuz, S., Schipper, L., Khrushch, M., & Ting, M. (1999). Manufacturing energy use in OECD countries: decomposition of long-term trends. Energy Policy, 27(13), 769–778.CrossRef Unander, F., Karbuz, S., Schipper, L., Khrushch, M., & Ting, M. (1999). Manufacturing energy use in OECD countries: decomposition of long-term trends. Energy Policy, 27(13), 769–778.CrossRef
go back to reference United Nations. (1998). Kyoto Protocol to the United Nations Framework Convention on Climate Change. United Nations. (1998). Kyoto Protocol to the United Nations Framework Convention on Climate Change.
go back to reference World Bank. (2013). World development indicators. Washington (DC). World Bank. (2013). World development indicators. Washington (DC).
go back to reference Wu, L., Kaneko, S., & Matsuoka, S. (2005). Driving forces behind the stagnancy of China’s energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change. Energy Policy, 33(3), 319–335. doi:10.1016/j.enpol.2003.08.003.CrossRef Wu, L., Kaneko, S., & Matsuoka, S. (2005). Driving forces behind the stagnancy of China’s energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change. Energy Policy, 33(3), 319–335. doi:10.​1016/​j.​enpol.​2003.​08.​003.CrossRef
go back to reference Zhang, Y., Zhang, J., Yang, Z., & Li, S. (2011). Regional differences in the factors that influence China’ s energy-related carbon emissions, and potential mitigation strategies. Energy Policy, 39(12), 7712–7718. doi:10.1016/j.enpol.2011.09.015.CrossRef Zhang, Y., Zhang, J., Yang, Z., & Li, S. (2011). Regional differences in the factors that influence China’ s energy-related carbon emissions, and potential mitigation strategies. Energy Policy, 39(12), 7712–7718. doi:10.​1016/​j.​enpol.​2011.​09.​015.CrossRef
Metadata
Title
Which factors drive CO2 emissions in EU-15? Decomposition and innovative accounting
Authors
Victor Moutinho
Mara Madaleno
Pedro Miguel Silva
Publication date
01-10-2016
Publisher
Springer Netherlands
Published in
Energy Efficiency / Issue 5/2016
Print ISSN: 1570-646X
Electronic ISSN: 1570-6478
DOI
https://doi.org/10.1007/s12053-015-9411-x

Other articles of this Issue 5/2016

Energy Efficiency 5/2016 Go to the issue