Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Why Nuclear Power Plant Energy

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The major growth in the electricity production industry in the last 30 years has centered on the expansion of natural gas power plants based on gas turbine cycles. The most popular extension of the simple Brayton gas turbine has been the combined cycle power plant with the air-Brayton cycle serving as the topping cycle and the Steam-Rankine cycle serving as the bottoming cycle for new generation of nuclear power plants that are known as GEN-IV. The air-Brayton cycle is an open-air cycle, and the Steam-Rankine cycle is a closed cycle. The air-Brayton cycle for a natural gas-driven power plant must be an open cycle, where the air is drawn in from the environment and exhausted with the products of combustion to the environment. This technique is suggested as an innovative approach to GEN-IV nuclear power plants in the form and type of Small Modular Reactors (SMRs). The hot exhaust from the air-Brayton cycle passes through a heat recovery steam generator (HRSG) prior to exhausting to the environment in a combined cycle. The HRSG serves the same purpose as a boiler for the conventional Steam-Rankine cycle [1, 2].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zohuri, B. (2015). Combined cycle driven efficiency for next generation nuclear power plants: An innovative design approach (1st ed.). New York: Springer. Zohuri, B. (2015). Combined cycle driven efficiency for next generation nuclear power plants: An innovative design approach (1st ed.). New York: Springer.
2.
go back to reference Zohuri, B., & McDaniel, P. (2017). Combined cycle driven efficiency for next generation nuclear power plants: An innovative design approach (2nd ed.). New York: Springer. Zohuri, B., & McDaniel, P. (2017). Combined cycle driven efficiency for next generation nuclear power plants: An innovative design approach (2nd ed.). New York: Springer.
3.
go back to reference Zohuri, B. (2018). Small modular reactors as renewable energy sources. New York: Springer. Zohuri, B. (2018). Small modular reactors as renewable energy sources. New York: Springer.
4.
go back to reference Zohuri, B. (2018). Hydrogen energy: Challenges and solutions for a cleaner future. New York: Springer. Zohuri, B. (2018). Hydrogen energy: Challenges and solutions for a cleaner future. New York: Springer.
5.
go back to reference Zohuri, B. (2017). Hybrid energy systems: Driving reliable renewable sources of energy storage. New York: Springer. Zohuri, B. (2017). Hybrid energy systems: Driving reliable renewable sources of energy storage. New York: Springer.
6.
go back to reference The future of nuclear power, an interdisciplinary MIT study. (2003). The future of nuclear power, an interdisciplinary MIT study. (2003).
7.
go back to reference Zohuri, B. (2016). Plasma physics and controlled thermonuclear reactions driven fusion energy. New York: Springer.CrossRef Zohuri, B. (2016). Plasma physics and controlled thermonuclear reactions driven fusion energy. New York: Springer.CrossRef
8.
go back to reference Zohuri, B. (2016). Inertial confinement fusion driven thermonuclear energy. New York: Springer. Zohuri, B. (2016). Inertial confinement fusion driven thermonuclear energy. New York: Springer.
9.
go back to reference Zohuri, B. (2017). Magnetic confinement fusion driven thermonuclear energy. New York: Springer. Zohuri, B. (2017). Magnetic confinement fusion driven thermonuclear energy. New York: Springer.
10.
go back to reference Cohen, B. L. (1974). Nuclear science and society. Garden City, NY: Anchor Books. Cohen, B. L. (1974). Nuclear science and society. Garden City, NY: Anchor Books.
11.
go back to reference Zohuri, B., & McDaniel, P. (2015). Thermodynamics in nuclear power plant systems. New York: Springer.CrossRef Zohuri, B., & McDaniel, P. (2015). Thermodynamics in nuclear power plant systems. New York: Springer.CrossRef
12.
go back to reference Zohuri, B. (2017). Thermal-hydraulic analysis of nuclear reactors (2nd ed.). New York: Springer.CrossRef Zohuri, B. (2017). Thermal-hydraulic analysis of nuclear reactors (2nd ed.). New York: Springer.CrossRef
13.
go back to reference Chilton, A. B., Kenneth Shults, J., & Faw, R. E. (1983). Principle of radiation shielding (1st ed.). Upper Saddle River: Prentice Hall. Chilton, A. B., Kenneth Shults, J., & Faw, R. E. (1983). Principle of radiation shielding (1st ed.). Upper Saddle River: Prentice Hall.
14.
go back to reference GE Energy Flex Efficiency 50 Combined Cycle Power Plant, e-brochure. (2012). GE Energy Flex Efficiency 50 Combined Cycle Power Plant, e-brochure. (2012).
15.
go back to reference Horlock, J. H. (1997). Cogeneration-combined heat and power (CHP). Malabar, FL: Krieger Publishing. Horlock, J. H. (1997). Cogeneration-combined heat and power (CHP). Malabar, FL: Krieger Publishing.
16.
go back to reference Mattingly, J. D. (1996). Elements of gas turbine propulsion. New York: McGraw-Hill. Mattingly, J. D. (1996). Elements of gas turbine propulsion. New York: McGraw-Hill.
17.
go back to reference Zohuri, B., McDaniel, P., & De Oliveira, C. (2015). Advanced nuclear open-air-Brayton cycles for highly efficient power conversion. Nuclear Technology Journal. Zohuri, B., McDaniel, P., & De Oliveira, C. (2015). Advanced nuclear open-air-Brayton cycles for highly efficient power conversion. Nuclear Technology Journal.
18.
go back to reference Zohuri, B. (2017). Inertial confinement fusion driven thermonuclear energy. New York: Springer. Zohuri, B. (2017). Inertial confinement fusion driven thermonuclear energy. New York: Springer.
19.
go back to reference Johnson, K. (2009, May 21). Is nuclear power renewable energy. Wall Street Journal. Johnson, K. (2009, May 21). Is nuclear power renewable energy. Wall Street Journal.
20.
go back to reference Cohen, B. L. (1983). Breeder reactors: A renewable energy source. American Journal of Physics, 51, 75.CrossRef Cohen, B. L. (1983). Breeder reactors: A renewable energy source. American Journal of Physics, 51, 75.CrossRef
22.
go back to reference Zohuri, B. (2016). Neutronic analysis for nuclear reactor systems (1st ed.). New York: Springer. Zohuri, B. (2016). Neutronic analysis for nuclear reactor systems (1st ed.). New York: Springer.
23.
go back to reference Fraas, A. P. (1989). Heat exchanger design (2nd ed.). New York: Wiley. Fraas, A. P. (1989). Heat exchanger design (2nd ed.). New York: Wiley.
24.
go back to reference Kanter, J. (2009, August 3). Is nuclear power renewable. New York Times. Kanter, J. (2009, August 3). Is nuclear power renewable. New York Times.
25.
go back to reference Chowdhury, D. (2012, March 22). Is nuclear energy renewable energy. Stanford Physics Department. Chowdhury, D. (2012, March 22). Is nuclear energy renewable energy. Stanford Physics Department.
26.
go back to reference Deterring terrorism—Aircraft crash impact analyses demonstrate nuclear power plant’s structure strength. EPRI study. Retrieved December 2002, from www.nei.org. Deterring terrorism—Aircraft crash impact analyses demonstrate nuclear power plant’s structure strength. EPRI study. Retrieved December 2002, from www.​nei.​org.
27.
go back to reference OECD Nuclear Energy Agency. (2001). Trends in the nuclear fuel cycle. ISBN 92-64-19664-1; Nuclear Science Committee. (1998, October). Summary of the workshop on advanced reactors with innovative fuel. NEA/NSC/DOC (99) 2. OECD Nuclear Energy Agency. (2001). Trends in the nuclear fuel cycle. ISBN 92-64-19664-1; Nuclear Science Committee. (1998, October). Summary of the workshop on advanced reactors with innovative fuel. NEA/NSC/DOC (99) 2.
28.
go back to reference Bradford, T. S., Froggatt, A., & Milborrow, D. (2007). The economics of nuclear power. Research report 2007. Reenpeace.org. Bradford, T. S., Froggatt, A., & Milborrow, D. (2007). The economics of nuclear power. Research report 2007. Reenpeace.​org.
Metadata
Title
Why Nuclear Power Plant Energy
Author
Bahman Zohuri
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05882-1_1