Skip to main content
Top
Published in: Wireless Personal Communications 4/2017

29-09-2016

Wireless Information and Energy Transfer in Nonregenerative OFDM AF Relay Systems

Authors: Gaofei Huang, Wanqing Tu

Published in: Wireless Personal Communications | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Energy harvesting (EH) is a promising strategy to prolong the operation of energy-constrained wireless systems. Simultaneous wireless information and energy transfer (SWIET) is a potential EH technique which has recently drawn significant attention. By employing SWIET at relay nodes in wireless relay systems, the relay nodes can harvest energy and receive information from their source nodes simultaneously as radio signals can carry energy as well as information at the same time, which solves the energy scarcity problem for wireless relay nodes. In this paper, we study SWIET for nonregenerative orthogonal-frequency-division multiplexing (OFDM) amplify-and-forward systems in order to maximize the end-to-end achievable rate by optimizing resource allocation. Firstly, we propose an optimal energy-transfer power allocation policy which utilizes the diversity provided by OFDM modulation. We then validate that the ordered-signal-to-noise ratio (SNR) subcarrier pairing (SP) is the optimal SP scheme. After that, we investigate the information-transfer power allocation (IPA) and EH time optimization problem which is formulated as a non-convex optimization problem. By making the approximation at high SNR regime, we convert this non-convex optimization problem into a quasi-convex programming problem, where an algorithm is derived to jointly optimize the IPA and EH time. By analytical analysis, we validate that the proposed resource allocation scheme has much lower computational complexity than peer studies in the literature. Finally, simulation results verify the optimality of our proposed resource allocation scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Khaliq, H., Iqbal, Q. A., & Asif, W. (2015). Topology control for harvesting enabled wireless sensor networks: A design approach. Wireless Personal Communications, 82, 81–101.CrossRef Khaliq, H., Iqbal, Q. A., & Asif, W. (2015). Topology control for harvesting enabled wireless sensor networks: A design approach. Wireless Personal Communications, 82, 81–101.CrossRef
2.
go back to reference Grover, P., Sahai, A. (2008). Transporting information and energy. In Proceedings of IEEE ISIT (pp. 1612–1616). Canada: Toronto. Grover, P., Sahai, A. (2008). Transporting information and energy. In Proceedings of IEEE ISIT (pp. 1612–1616). Canada: Toronto.
3.
go back to reference Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transations on Wireless Communications, 12(5), 1989–2001.CrossRef Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transations on Wireless Communications, 12(5), 1989–2001.CrossRef
4.
go back to reference Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Wireless Communications, 61(11), 4754–4767.CrossRef Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Wireless Communications, 61(11), 4754–4767.CrossRef
5.
go back to reference Huang, K., & Larsson, E. (2013). Simultaneous information and power transfer for broadband wireless systems. IEEE Transactions on Signal Processing, 61(23), 5972–5986.MathSciNetCrossRef Huang, K., & Larsson, E. (2013). Simultaneous information and power transfer for broadband wireless systems. IEEE Transactions on Signal Processing, 61(23), 5972–5986.MathSciNetCrossRef
6.
go back to reference Yu, X., & Park, D. (2015). Optimal beamforming design for information and power transmission in the presence of eavesdroppers. Wireless Personal Communications. doi:10.1007/s11277-015-2508-x. Yu, X., & Park, D. (2015). Optimal beamforming design for information and power transmission in the presence of eavesdroppers. Wireless Personal Communications. doi:10.​1007/​s11277-015-2508-x.
7.
go back to reference Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless EH and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless EH and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef
8.
go back to reference Tan, L., Zhu, Z., Ge, F., & Xiong, N. (2015). Utility maximization resource allocation in wireless networks: Methods and algorithms. IEEE Transactions on Systems, Man and Cybernetics: Systems, 45(7), 1018–1034.CrossRef Tan, L., Zhu, Z., Ge, F., & Xiong, N. (2015). Utility maximization resource allocation in wireless networks: Methods and algorithms. IEEE Transactions on Systems, Man and Cybernetics: Systems, 45(7), 1018–1034.CrossRef
9.
go back to reference Tan, L., & Zhang, Y. (2015). Optimal resource allocation with principle of equality and diminishing marginal utility in wireless networks. Wireless Personal Communications, 84(1), 671–693.CrossRef Tan, L., & Zhang, Y. (2015). Optimal resource allocation with principle of equality and diminishing marginal utility in wireless networks. Wireless Personal Communications, 84(1), 671–693.CrossRef
10.
go back to reference Ding, Z., & Poor, H. V. (2013). Cooperative EH networks with spatially random users. IEEE Signal Processing Letters, 20(12), 1211–1214.CrossRef Ding, Z., & Poor, H. V. (2013). Cooperative EH networks with spatially random users. IEEE Signal Processing Letters, 20(12), 1211–1214.CrossRef
11.
go back to reference Ding, Z., Krikidis, I., Sharif, B., & Poor, H. V. (2014). Wireless information and power transfer in cooperative networks with spatially random relays. IEEE Transactions on Wireless Communications, 13(8), 4440–4453.CrossRef Ding, Z., Krikidis, I., Sharif, B., & Poor, H. V. (2014). Wireless information and power transfer in cooperative networks with spatially random relays. IEEE Transactions on Wireless Communications, 13(8), 4440–4453.CrossRef
13.
go back to reference Xiong, K., Fan, P., Zhang, C., & Letaief, K. B. (2015). Wireless information and energy transfer for two-hop non-regenerative MIMO-OFDM relay networks. IEEE Journal on Selected Areas in Communications. doi:10.1109/JSAC.2015.2391931. Xiong, K., Fan, P., Zhang, C., & Letaief, K. B. (2015). Wireless information and energy transfer for two-hop non-regenerative MIMO-OFDM relay networks. IEEE Journal on Selected Areas in Communications. doi:10.​1109/​JSAC.​2015.​2391931.
14.
go back to reference Herdin, M. (2006). A chunk based OFDM amplify-and-forward relaying scheme for 4G mobile radio systems. In Proceedings of IEEE ICC (pp. 4507–4512). Turkey: Istanbul. Herdin, M. (2006). A chunk based OFDM amplify-and-forward relaying scheme for 4G mobile radio systems. In Proceedings of IEEE ICC (pp. 4507–4512). Turkey: Istanbul.
15.
go back to reference Hajiaghayi, M., Dong, M., & Liang, B. (2011). Jointly optimal channel pairing and power allocation for multi-channel multi-hop relaying. IEEE Transactions on Signal Processing, 59(10), 4998–5012.MathSciNetCrossRef Hajiaghayi, M., Dong, M., & Liang, B. (2011). Jointly optimal channel pairing and power allocation for multi-channel multi-hop relaying. IEEE Transactions on Signal Processing, 59(10), 4998–5012.MathSciNetCrossRef
16.
go back to reference Zhang, W., Mitra, U., & Chiang, M. (2011). Optimization of amplify-and-forward multicarrier two-hop transmission. IEEE Transactions on Communications, 59(5), 1434–1445.CrossRef Zhang, W., Mitra, U., & Chiang, M. (2011). Optimization of amplify-and-forward multicarrier two-hop transmission. IEEE Transactions on Communications, 59(5), 1434–1445.CrossRef
17.
go back to reference Li, Y., Wang, W., Kong, J., & Peng, M. (2009). Subcarrier pairing for amplify-and-forward and decode-and-forward OFDM relay links. IEEE Communication Letters, 13(4), 4998–5012. Li, Y., Wang, W., Kong, J., & Peng, M. (2009). Subcarrier pairing for amplify-and-forward and decode-and-forward OFDM relay links. IEEE Communication Letters, 13(4), 4998–5012.
18.
Metadata
Title
Wireless Information and Energy Transfer in Nonregenerative OFDM AF Relay Systems
Authors
Gaofei Huang
Wanqing Tu
Publication date
29-09-2016
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2017
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3768-9

Other articles of this Issue 4/2017

Wireless Personal Communications 4/2017 Go to the issue