Skip to main content
Top

2021 | OriginalPaper | Chapter

WP-3 Internal Flows—Compressors

Authors : Patrick Grothe, Pawel Flaszynski, Ryszard Szwaba, Michal Piotrowicz, Piotr Kaczynski, Benoit Tartinville, Charles Hirsch, Alexander Hergt

Published in: Transition Location Effect on Shock Wave Boundary Layer Interaction

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the case of a civil turbofan engine operating at particularly high altitudes the Reynolds number can drop by a factor of 4, when compared to the sea level values. The laminar boundary layer on the transonic compressor rotor blades interacts with shock waves and as a result a strong boundary layer separation forms. This can seriously affect the aero-engine performance and operation. One way to avoid strong separation is to ensure that the boundary layer upstream of the shock wave is turbulent. Forcing transition within the boundary layer can be achieved through the application of surface roughness patches. Although such passive control methods are already in use, the mechanism of the shock wave-laminar boundary layer interaction, and in particular the source of the strong shock unsteadiness are still not well understood. Furthermore, the benefits of boundary layer control obtained for low Reynolds numbers can turn into loss increase at the higher levels of Reynolds numbers. Another possibility of transition control is to use Vortex Generators driven by Air Jet (AJVG). In the compressor application the jets may be driven by the pressure difference between pressure and suction side of the blade. There are two effects which are present. The main effect is resulting from streamwise vortices generated on the blade suction side. The second effect is the suction of the boundary layer on the pressure side. The goal of Work Package 3 was to improve the understanding of the shock wave–laminar boundary layer interaction on the transonic compressor blade. This can potentially lead to successful new design solutions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Flaszynski, P. Doerffer, R. Szwaba, P. Kaczynski, M. Piotrowicz, Shock wave boundary layer interaction on suction side of compressor profile in single passage test section. J. Therm. Sci. 24(6), 510–515 (2015) P. Flaszynski, P. Doerffer, R. Szwaba, P. Kaczynski, M. Piotrowicz, Shock wave boundary layer interaction on suction side of compressor profile in single passage test section. J. Therm. Sci. 24(6), 510–515 (2015)
2.
go back to reference P. Doerffer, C. Hirsch, J.-P. Dussauge, H. Babinsky, G.N. Barakos, Unsteady Effects of Shock Wave Induced Separation (2011) P. Doerffer, C. Hirsch, J.-P. Dussauge, H. Babinsky, G.N. Barakos, Unsteady Effects of Shock Wave Induced Separation (2011)
3.
go back to reference P. Doerffer, J. Telega, Flow control effect on unsteadiness of shock wave induced separation. J. Therm. Sci. 22(6), 511–516 (2013) P. Doerffer, J. Telega, Flow control effect on unsteadiness of shock wave induced separation. J. Therm. Sci. 22(6), 511–516 (2013)
4.
go back to reference J.P. Gostelow, Cascade aerodynamics (1984), ss. 270 p: ill, 23 cm J.P. Gostelow, Cascade aerodynamics (1984), ss. 270 p: ill, 23 cm
5.
go back to reference P. Flaszynski, R. Szwaba, Experimental and numerical analysis of a streamwise vortex generator for subsonic flow, January (2006) P. Flaszynski, R. Szwaba, Experimental and numerical analysis of a streamwise vortex generator for subsonic flow, January (2006)
6.
go back to reference R. Szwaba, Comparison of the influence of different air-jet vortex generators on the separation region. Aerosp. Sci. Technol. 15(1), 45–52 (2011) R. Szwaba, Comparison of the influence of different air-jet vortex generators on the separation region. Aerosp. Sci. Technol. 15(1), 45–52 (2011)
7.
go back to reference P. Flaszynski, P. Doerffer, R. Szwaba, M. Piotrowicz, P. Kaczynski, Laminar-turbulent transition tripped by step on transonic compressor profile. J. Therm. Sci. 27(1), 1–7 (2018) P. Flaszynski, P. Doerffer, R. Szwaba, M. Piotrowicz, P. Kaczynski, Laminar-turbulent transition tripped by step on transonic compressor profile. J. Therm. Sci. 27(1), 1–7 (2018)
8.
go back to reference F.R. Menter, A.V. Garbaruk, Y. Egorov, Explicit algebraic reynolds stress models for anisotropic wall-bounded flows, in EUCASS—3rd European Conference for Aerospace Sciences, July 6–9th 2009 (2009) F.R. Menter, A.V. Garbaruk, Y. Egorov, Explicit algebraic reynolds stress models for anisotropic wall-bounded flows, in EUCASS—3rd European Conference for Aerospace Sciences, July 6–9th 2009 (2009)
9.
go back to reference H.A. Schreiber, H. Starken, W. Steinert, Transonic and supersonic cascades. AGARDOgraph – Adv. Methods Cascade Test., AGARD AG 328, 35–59 (1993) H.A. Schreiber, H. Starken, W. Steinert, Transonic and supersonic cascades. AGARDOgraph – Adv. Methods Cascade Test., AGARD AG 328, 35–59 (1993)
10.
go back to reference W. Steinert, R. Fuchs, H. Starken, H, Inlet flow angle determination of transonic compressor cascade. ASME J. Turbomach. 114(3), 487–493 (1992) W. Steinert, R. Fuchs, H. Starken, H, Inlet flow angle determination of transonic compressor cascade. ASME J. Turbomach. 114(3), 487–493 (1992)
11.
go back to reference R. Kiock, G. Laskowski, H. Hoheisel, Die Erzeugung höherer Turbulenzgrade in der Meßstrecke des Hochgeschwindigkeits-Gitterwindkanals, Braunschweig, zur Simulation turbomaschinenähnlicher Bedingungen. DLR Forschungsbericht (FB82-25, 1982) R. Kiock, G. Laskowski, H. Hoheisel, Die Erzeugung höherer Turbulenzgrade in der Meßstrecke des Hochgeschwindigkeits-Gitterwindkanals, Braunschweig, zur Simulation turbomaschinenähnlicher Bedingungen. DLR Forschungsbericht (FB82-25, 1982)
12.
go back to reference H.A. Schreiber, Comparison between flows in cascades and rotors in the transonic range. Lect. Ser. Transonic Blade-to-Blade Flows Axial Turbomach., von Karman Inst. Fluid Dyn. (1976) H.A. Schreiber, Comparison between flows in cascades and rotors in the transonic range. Lect. Ser. Transonic Blade-to-Blade Flows Axial Turbomach., von Karman Inst. Fluid Dyn. (1976)
13.
go back to reference H.A. Schreiber, H. Starken, On the definition of the axial velocity density ratio in theoretical and experimental cascade investigation. Symp. Measuring Tech. Transonic Supersonic Flow Cascades Turbomachines (1981) H.A. Schreiber, H. Starken, On the definition of the axial velocity density ratio in theoretical and experimental cascade investigation. Symp. Measuring Tech. Transonic Supersonic Flow Cascades Turbomachines (1981)
14.
go back to reference P. Schimming, Experimental Investigation of Supersonic Inflow of Compressor Cascade by the Laser-2-Focus Method. Symp. Measuring Tech. Transonic Supersonic Cascade Flow (1976) P. Schimming, Experimental Investigation of Supersonic Inflow of Compressor Cascade by the Laser-2-Focus Method. Symp. Measuring Tech. Transonic Supersonic Cascade Flow (1976)
15.
go back to reference R. Schodl, A laser-two-focus (L2F) velocimeter for automatic flow vector measurements in the rotating components of turbomachines. ASME J. Fluids Eng. 102(4), 412–419 (1980) R. Schodl, A laser-two-focus (L2F) velocimeter for automatic flow vector measurements in the rotating components of turbomachines. ASME J. Fluids Eng. 102(4), 412–419 (1980)
16.
go back to reference R. Schodl, Laser two focus techniques. VKI Lect. Ser. 1989–05 Meas. Tech. Aerodyn. (1989) R. Schodl, Laser two focus techniques. VKI Lect. Ser. 1989–05 Meas. Tech. Aerodyn. (1989)
17.
go back to reference J. Klinner, A. Hergt, C. Willert, Experimental Investigation of the transonic flow around the leading edge of an eroded fan airfoil. Exp. Fluids 55(9) (2014) J. Klinner, A. Hergt, C. Willert, Experimental Investigation of the transonic flow around the leading edge of an eroded fan airfoil. Exp. Fluids 55(9) (2014)
18.
go back to reference A. Hergt, J. Klinner, J. Wellner, C. Willert, S. Grund, W. Steinert, M. Beversdorff, The present challenge of transonic compressor blade design. ASME J. Turbomach. 141(9) (2019) A. Hergt, J. Klinner, J. Wellner, C. Willert, S. Grund, W. Steinert, M. Beversdorff, The present challenge of transonic compressor blade design. ASME J. Turbomach. 141(9) (2019)
19.
go back to reference D.J. Mee, T.W. Walton, S.B. Harrison, T. Jones, A Comparison of Liquid Crystal Techniques for Transition Detection. No. AIAA-91-0062 in 29th Aerospace Science Meeting, AIAA (1991) D.J. Mee, T.W. Walton, S.B. Harrison, T. Jones, A Comparison of Liquid Crystal Techniques for Transition Detection. No. AIAA-91-0062 in 29th Aerospace Science Meeting, AIAA (1991)
20.
go back to reference W. Steinert, H. Starken, Off-design transition and separation behavior of a CDA cascade. ASME J. Turbomach. 118(2), 204–210 (1996) W. Steinert, H. Starken, Off-design transition and separation behavior of a CDA cascade. ASME J. Turbomach. 118(2), 204–210 (1996)
21.
go back to reference H.A. Schreiber, Experimental Investigation on Shock Losses of Transonic and Supersonic Compressor Cascades. No. AGARD-CP-401 in Conference Proceedings for Transonic and Supersonic Phenomena in Turbomachines, AGARD, pp. 11–1–11–15 (1986) H.A. Schreiber, Experimental Investigation on Shock Losses of Transonic and Supersonic Compressor Cascades. No. AGARD-CP-401 in Conference Proceedings for Transonic and Supersonic Phenomena in Turbomachines, AGARD, pp. 11–1–11–15 (1986)
22.
go back to reference J. Klinner, A. Hergt, S. Grund, C. Willert, Experimental investigation of shock-induced separation and flow control in a transonic compressor cascade. Exp. Fluids 60(6) (2019) J. Klinner, A. Hergt, S. Grund, C. Willert, Experimental investigation of shock-induced separation and flow control in a transonic compressor cascade. Exp. Fluids 60(6) (2019)
23.
go back to reference M. Acharya, J. Bornstein, M.P. Escudier, Turbulent boundary layers on rough surfaces. Exp. Fluids 4, 33–47 (1986) M. Acharya, J. Bornstein, M.P. Escudier, Turbulent boundary layers on rough surfaces. Exp. Fluids 4, 33–47 (1986)
24.
go back to reference B. Aupoix, A general strategy to extend turbulence models to rough surfaces: application to Smith’s k-L model. J. Fluids Eng. 129(10), 1245 (2007) B. Aupoix, A general strategy to extend turbulence models to rough surfaces: application to Smith’s k-L model. J. Fluids Eng. 129(10), 1245 (2007)
25.
go back to reference L. Eça, M. Hoekstra, Numerical aspects of including wall roughness effects in the SST k-ω eddy-viscosity turbulence model. Comput. Fluids 40(1), 299–314 (2011) L. Eça, M. Hoekstra, Numerical aspects of including wall roughness effects in the SST k-ω eddy-viscosity turbulence model. Comput. Fluids 40(1), 299–314 (2011)
26.
go back to reference J.P. Bons, A review of surface roughness effects in gas turbines. J. Turbomach. 132(2), 21004 (2010) J.P. Bons, A review of surface roughness effects in gas turbines. J. Turbomach. 132(2), 21004 (2010)
Metadata
Title
WP-3 Internal Flows—Compressors
Authors
Patrick Grothe
Pawel Flaszynski
Ryszard Szwaba
Michal Piotrowicz
Piotr Kaczynski
Benoit Tartinville
Charles Hirsch
Alexander Hergt
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-47461-4_4

Premium Partners