skip to main content
10.1145/2342356.2342431acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Free Access

A case for a coordinated internet video control plane

Published:13 August 2012Publication History

ABSTRACT

Video traffic already represents a significant fraction of today's traffic and is projected to exceed 90% in the next five years. In parallel, user expectations for a high quality viewing experience (e.g., low startup delays, low buffering, and high bitrates) are continuously increasing. Unlike traditional workloads that either require low latency (e.g., short web transfers) or high average throughput (e.g., large file transfers), a high quality video viewing experience requires sustained performance over extended periods of time (e.g., tens of minutes). This imposes fundamentally different demands on content delivery infrastructures than those envisioned for traditional traffic patterns. Our large-scale measurements over 200 million video sessions show that today's delivery infrastructure fails to meet these requirements: more than 20% of sessions have a rebuffering ratio ≥ 10% and more than 14% of sessions have a video startup delay ≥ 10s. Using measurement-driven insights, we make a case for a video control plane that can use a global view of client and network conditions to dynamically optimize the video delivery in order to provide a high quality viewing experience despite an unreliable delivery infrastructure. Our analysis shows that such a control plane can potentially improve the rebuffering ratio by up to 2× in the average case and by more than one order of magnitude under stress.

Skip Supplemental Material Section

Supplemental Material

sigcomm-viii-02-acaseforacoordinatedinternetvideocontrolplane.mp4

mp4

99.6 MB

References

  1. Akamai HD Adaptive Streaming. http://wwwns.akamai.com/hdnetwork/demo/index.html.Google ScholarGoogle Scholar
  2. Cisco forecast. http://blogs.cisco.com/sp/comments/cisco\_visual\_networking\_index\_forecast\_annual\_update/.Google ScholarGoogle Scholar
  3. Driving Engagement for Online Video. http://events.digitallyspeaking.com/akamai/mddec10/post.html?hash=ZDlBSGhsMXBidnJ3RXNWSW5mSE1HZz09.Google ScholarGoogle Scholar
  4. Microsoft Smooth Streaming. http://www.microsoft.com/silverlight/smoothstreaming.Google ScholarGoogle Scholar
  5. Move networks. http://www.movenetworks.com/.Google ScholarGoogle Scholar
  6. Video quality metrics. http: //www.akamai.com/html/solutions/stream_analyzer.html.Google ScholarGoogle Scholar
  7. I. Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over theInternet. IEEE Multimedia, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. K. Chen, C. Huang, P. Huang, C. Lei. Quantifying Skype User Satisfaction. In Proc. SIGCOMM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. L. Plissonneau and E. Biersack. A Longitudinal View of HTTP Video Streaming Performance. In Proc. MMSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. V. K. Adhikari, Y. Chen, S. Jain, and Z.-L. Zhang. Where Do You Tube? Uncovering YouTube Server Selection Strategy. In Proc. ICCCN, 2011.Google ScholarGoogle Scholar
  11. V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, , and Z.-L. Zhang. A Tale of Three CDNs: An Active Measurement Study of Hulu and Its CDNs. In Proc. IEEE Global Internet Symposium, 2012.Google ScholarGoogle Scholar
  12. K. Andreev, B. M. Maggs, A. Meyerson, and R. Sitaraman. Designing Overlay Multicast Networks for Streaming. In Proc. SPAA, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ramakrishnan. Optimal Content Placement for a Large-Scale VoD System. In Proc. CoNext, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. R. E. Bellman. Adaptive control processes: A guided tour. Princeton University Press.Google ScholarGoogle Scholar
  15. J. Byers, M. Luby, and M. Mitzenmacher. A digital fountain approach to asynchronous reliable multicast. IEEE JSAC, Oct. 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I Tube, You Tube, Everybody Tubes: Analyzing the World's Largest User Generated Content Video System. In Proc. IMC, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. L. D. Cicco and S. Mascolo. An Experimental Investigation of the Akamai Adaptive Video Streaming. In Proc. USAB, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. N. Cranley, P. Perry, and L. Murphy. User perception of adapting video quality. International Journal of Human-Computer Studies, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. Rayburn. Telcos and Carriers Forming new Federated CDN Group called OCX (Operator Carrier Exchange). June 2011. StreamingMediaBlog.com.Google ScholarGoogle Scholar
  20. D. P. de Farias and N. Megiddo. Exploration-Exploitation Tradeoffs for Experts Algorithms in Reactive Environments. In Proc. NIPS, 2004.Google ScholarGoogle Scholar
  21. F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. A. Joseph, A. Ganjam, J. Zhan, and H. Zhang. Understanding the impact of video quality on user engagement. In Proc. SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. Finamore, M. Mellia, M. Munafo, R. Torres, and S. G. Rao. Youtube everywhere: Impact of device and infrastructure synergies on user experience. In Proc. IMC, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. G. Nemhauser, L. Wosley, and M. Fisher. An analysis of the approximations for maximizing submodular set functions. Mathematical Programming, 14:265--294, 1978.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. George, W. B. Powell, S. R. Kulkarni, and S. Mahadevan. Value function approximation using multiple aggregation for multiattribute resource management. http://www.scientificcommons.org/53756787, 2009.Google ScholarGoogle Scholar
  25. I. Ryzhov and W. B. Powell. Bayesian Active Learning with Basis Functions. In Proc. IEEE Workshop on Adaptive Dynamic Programming and Reinforcement Learning, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  26. C. Kreibich, B. N. V. Paxson, and N. Weaver. Netalyzr: Illuminating The Edge Network. In Proc. IMC, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Krishnan, H. V. Madhyastha, S. Jain, S. Srinivasan, A. Krishnamurthy, T. Anderson, and J. Gao. Moving Beyond End-to-End Path Information to Optimize CDN Performance. In Proc. IMC, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. L. De Cicco, S. Mascolo, and V. Palmisano. Feedback Control for Adaptive Live Video Streaming. In Proc. of MMSys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. H. Liu, Y. Wang, Y. R. Yang, A. Tian, and H. Wang. Optimizing Cost and Performance for Content Multihoming. In Proc. SIGCOMM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Minoux. Accelerated Greedy Algorithms for Maximizing Submodular Set Functions. In Proc. of 8th IFIP Conference, Springer-Verlag, 1977.Google ScholarGoogle Scholar
  31. M. Venkataraman and M. Chatterjee. Effects of Internet Path selection on Video QoE. In Proc. MMSys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, and Q. Zhao. Towards Automated Performance Diagnosis in a Large IPTV Network. In Proc. SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. K. Mccallum. Learning to use selective attention and short-term memory in sequential tasks. In Proc. Conference on Simulation of Adaptive Behavior, 1996.Google ScholarGoogle Scholar
  34. S. McCanne, M. Vetterli, and V. Jacobson. Low-complexity video coding for receiver-driven layered multicast. IEEE JSAC, Aug. 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. R. K. P. Mok, E. W. W. Chan, X. Luo, and R. K. C. Chang. Inferring the QoE of HTTP Video Streaming from User-Viewing Activities . In Proc. SIGCOMM W-MUST, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. S. Peterson and E. G. Sirer. Antfarm: Efficient Content Distribution with Managed Swarms. In Proc. NSDI, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. R. Powell. The Federated CDN Cometh. May 2011. TelecomRamblings.com.Google ScholarGoogle Scholar
  38. I. Ryzhov, P. Frazier, and W. Powell. The knowledge gradient algorithm for a general class of online learning problems. http: //www.princeton.edu/~iryzhov/journal/online7.pdf, 2011.Google ScholarGoogle Scholar
  39. S. Akhshabi, A. Begen, C. Dovrolis. An Experimental Evaluation of Rate Adaptation Algorithms in Adaptive Streaming over HTTP. In Proc. MMSys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. H. H. Song, Z. Ge, A. Mahimkar, J. Wang, J. Yates, Y. Zhang, A. Basso, and M. Chen. Q-score: Proactive Service Quality Assessment in a Large IPTV System. In Proc. IMC, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafo, and S. Rao. Dissecting Video Server Selection Strategies in the YouTube CDN. In Proc. ICDCS, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. M. Watson. HTTP Adaptive Streaming in Practice. http: //web.cs.wpi.edu/~claypool/mmsys-2011/Keynote02.pdf.Google ScholarGoogle Scholar
  43. H. Yin, X. Liu, F. Qiu, N. Xia, C. Lin, H. Zhang, V. Sekar, and G. Min. Inside the Bird's Nest: Measurements of Large-Scale Live VoD from the 2008 Olympics. In Proc. IMC, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A case for a coordinated internet video control plane

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGCOMM '12: Proceedings of the ACM SIGCOMM 2012 conference on Applications, technologies, architectures, and protocols for computer communication
          August 2012
          474 pages
          ISBN:9781450314190
          DOI:10.1145/2342356

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 13 August 2012

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate554of3,547submissions,16%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader