skip to main content
10.1145/2807442.2807451acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

ReForm: Integrating Physical and Digital Design through Bidirectional Fabrication

Published:05 November 2015Publication History

ABSTRACT

Digital fabrication machines such as 3D printers and laser-cutters allow users to produce physical objects based on virtual models. The creation process is currently unidirectional: once an object is fabricated it is separated from its originating virtual model. Consequently, users are tied into digital modeling tools, the virtual design must be completed before fabrication, and once fabricated, re-shaping the physical object no longer influences the digital model. To provide a more flexible design process that allows objects to iteratively evolve through both digital and physical input, we introduce bidirectional fabrication. To demonstrate the concept, we built ReForm, a system that integrates digital modeling with shape input, shape output, annotation for machine commands, and visual output. By continually synchronizing the physical object and digital model it supports object versioning to allow physical changes to be undone. Through application examples, we demonstrate the benefits of ReForm to the digital fabrication process.

Skip Supplemental Material Section

Supplemental Material

p93.mp4

mp4

36.6 MB

References

  1. Dragomatz, D., and Mann, S. A classified bibliography of literature on nc milling path generation. Computer-Aided Design 29, 3 (1997), 239--247.Google ScholarGoogle ScholarCross RefCross Ref
  2. Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. vol. 96, AAAI Press (1996), 226--231.Google ScholarGoogle Scholar
  3. Follmer, S., Carr, D., Lovell, E., and Ishii, H. Copycad: remixing physical objects with copy and paste from the real world. In Adjunct Proc. UIST (2010), 381--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Follmer, S., and Ishii, H. Kidcad: digitally remixing toys through tangible tools. In Proc. CHI (2012), 2401--2410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Grossman, T., Balakrishnan, R., and Singh, K. An interface for creating and manipulating curves using a high degree-of-freedom curve input device. In Proc. CHI (2003), 185--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ishii, H., Lakatos, D., Bonanni, L., and Labrune, J.-B. Radical atoms: Beyond tangible bits, toward transformable materials. interactions 19, 1 (Jan. 2012), 38--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Kulkarni, P., and Dutta, D. An accurate slicing procedure for layered manufacturing. Computer-Aided Design 28, 9 (1996), 683--697.Google ScholarGoogle ScholarCross RefCross Ref
  8. Lau, M., Hirose, M., Ohgawara, A., Mitani, J., and Igarashi, T. Situated modeling: a shape-stamping interface with tangible primitives. In Proc. TEI (2012), 275--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Loney, G. C., and Ozsoy, T. M. Nc machining of free form surfaces. Computer-Aided Design 19, 2 (1987), 85--90. Google ScholarGoogle ScholarCross RefCross Ref
  10. Mueller, S., Im, S., Gurevich, S., Teibrich, A., Pfisterer, L., Guimbreti'ere, F., and Baudisch, P. Wireprint: 3d printed previews for fast prototyping. In Proc. UIST (2014), 273--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Mueller, S., Lopes, P., and Baudisch, P. Interactive construction: interactive fabrication of functional mechanical devices. In Proc. UIST (2012), 599--606. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Peng, H., Zoran, A., and Guimbreti'ere, F. V. D-coil: A hands-on approach to digital 3d models design. In Proc. CHI (2015), 1807--1815. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Piper, B., Ratti, C., and Ishii, H. Illuminating clay: a 3-d tangible interface for landscape analysis. In Proc. CHI (2002), 355--362. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Raffle, H. S., Parkes, A. J., and Ishii, H. Topobo: A constructive assembly system with kinetic memory. In Proc. CHI (2004), 647--654. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Reed, M. Prototyping digital clay as an active material. In Proc. TEI (2009), 339--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Rivers, A., Adams, A., and Durand, F. Sculpting by numbers. ACM Trans. Graph. 31, 6 (Nov. 2012), 157:1--157:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Rossignac, J., Allen, M., Book, W. J., Glezer, A., Ebert-Uphoff, I., Shaw, C., Rosen, D., Askins, S., Bai, J., Bosscher, P., Gargus, J., Kim, B., Llamas, I., Nguyen, A., Yuan, G., and Zhu, H. Finger sculpting with digital clay: 3d shape input and output through a computer-controlled real surface. In Proceedings of the Shape Modeling International 2003, SMI '03, IEEE Computer Society (Washington, DC, USA, 2003), 229--. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Sheng, J., Balakrishnan, R., and Singh, K. An interface for virtual 3d sculpting via physical proxy. In Proc. GRAPHITE (2006), 213--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Song, H., Guimbreti'ere, F., Hu, C., and Lipson, H. Modelcraft: capturing freehand annotations and edits on physical 3d models. In Proc. UIST (2006), 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Sutherland, I. E. The ultimate display. In Proceedings of the IFIP Congress (1965), 506--508.Google ScholarGoogle Scholar
  21. Testuz, R., Schwartzburg, Y., and Pauly, M. Automatic Generation of Constructable Brick Sculptures. In Eurographics 2013 Short Papers, M.-A. Otaduy and O. Sorkine, Eds., The Eurographics Association (2013).Google ScholarGoogle Scholar
  22. Watanabe, R., Itoh, Y., Asai, M., Kitamura, Y., Kishino, F., and Kikuchi, H. The soul of activecube: Implementing a flexible, multimodal, three-dimensional spatial tangible interface. In Proc. ACE (2004), 173--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Weichel, C., Alexander, J., Karnik, A., and Gellersen, H. Spata: Spatio-tangible tools for fabrication-aware design. In Proc. TEI (2015), 189--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Weichel, C., Lau, M., Kim, D., Villar, N., and Gellersen, H. W. Mixfab: A mixed-reality environment for personal fabrication. In Proc. CHI (2014), 3855--3864. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Willis, K., Brockmeyer, E., Hudson, S., and Poupyrev, I. Printed optics: 3d printing of embedded optical elements for interactive devices. In Proc. UIST (2012), 589--598. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Willis, K. D., Xu, C., Wu, K.-J., Levin, G., and Gross, M. D. Interactive fabrication: new interfaces for digital fabrication. In Proc. TEI (2011), 69--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Zhang, Z. Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vision 13, 2 (Oct. 1994), 119--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Zoran, A., Shilkrot, R., and Paradiso, J. Human-computer interaction for hybrid carving. In Proc. UIST (2013), 433--440. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. ReForm: Integrating Physical and Digital Design through Bidirectional Fabrication

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '15: Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology
      November 2015
      686 pages
      ISBN:9781450337793
      DOI:10.1145/2807442

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 November 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UIST '15 Paper Acceptance Rate70of297submissions,24%Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader