Skip to main content
Top
Published in: Designs, Codes and Cryptography 5/2020

30-01-2020

2-(v, 5; m) spontaneous emission error designs

Authors: Bohua Zhu, Junling Zhou, Yanxun Chang

Published in: Designs, Codes and Cryptography | Issue 5/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantum jump codes are quantum codes which correct errors caused by quantum jumps. A t-spontaneous emission error design (t-SEED) was introduced by Beth et al. in 2003 to construct quantum jump codes. The number of designs (dimension) in a t-SEED corresponds to the number of orthogonal basis states in a quantum jump code. Denote by \(\overline{M}(t,k,v)\) the largest possible dimension m for which a nondegenerate t-(vkm) SEED exists. \(\overline{M}(2,3,v)\) has been determined completely, which is based on a great deal of research on large sets of Steiner triple systems and large sets of pairwise disjoint compatible 2-(v, 3, 1) packings. For \(k=4\), the upper bounds on dimensions of 2-(v, 4; m) SEEDs were also demonstrated and the corresponding leave graphs were investigated in Zhou and Chang (J Combin Des 24:439–460, 2016). In this paper we turn our attention to the case \(t=2\) and \(k=5\). We present general upper bounds on the dimensions of 2-(v, 5; m) SEEDs and describe the concrete leave graphs of the 2-SEEDs attaining the stated upper bounds.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alber G., Beth T., Charnes C., Delgado A., Grassl M., Mussinger M.: Stabilizing distinguishable qubits against spontaneous decay by detected-jump correcting quantum codes. Phys. Rev. Lett. 86, 4402–4405 (2001).CrossRef Alber G., Beth T., Charnes C., Delgado A., Grassl M., Mussinger M.: Stabilizing distinguishable qubits against spontaneous decay by detected-jump correcting quantum codes. Phys. Rev. Lett. 86, 4402–4405 (2001).CrossRef
2.
go back to reference Beth T., Charnes C., Grassl M., Alber G., Delgado A., Mussinger M.: A new class of designs which protect against quantum jumps. Des. Codes Cryptogr. 29, 51–70 (2003).MathSciNetCrossRef Beth T., Charnes C., Grassl M., Alber G., Delgado A., Mussinger M.: A new class of designs which protect against quantum jumps. Des. Codes Cryptogr. 29, 51–70 (2003).MathSciNetCrossRef
3.
go back to reference Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996).CrossRef Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996).CrossRef
4.
go back to reference Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405–408 (1997).MathSciNetCrossRef Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405–408 (1997).MathSciNetCrossRef
5.
go back to reference Cao H., Ji L., Zhu L.: Large sets of disjoint packings on \(6k + 5\) points. J. Combin. Theory (A) 108, 169–183 (2004).MathSciNetCrossRef Cao H., Ji L., Zhu L.: Large sets of disjoint packings on \(6k + 5\) points. J. Combin. Theory (A) 108, 169–183 (2004).MathSciNetCrossRef
6.
go back to reference Chang Y., Ji L., Zheng H.: A completion of LS\((2^n4^1)\). Discret. Math. 340, 1080–1085 (2017).CrossRef Chang Y., Ji L., Zheng H.: A completion of LS\((2^n4^1)\). Discret. Math. 340, 1080–1085 (2017).CrossRef
7.
go back to reference Ji L.: Existence of large sets of disjoint group-divisible designs with block size three and type \(2^n4^1\). J. Combin. Des. 13, 302–312 (2005).MathSciNetCrossRef Ji L.: Existence of large sets of disjoint group-divisible designs with block size three and type \(2^n4^1\). J. Combin. Des. 13, 302–312 (2005).MathSciNetCrossRef
8.
10.
go back to reference Lin Y., Jimbo M.: Extremal properties of \(t\)-SEEDs and recursive constructions. Des. Codes Cryptogr. 73, 805–823 (2014).MathSciNetCrossRef Lin Y., Jimbo M.: Extremal properties of \(t\)-SEEDs and recursive constructions. Des. Codes Cryptogr. 73, 805–823 (2014).MathSciNetCrossRef
11.
12.
13.
go back to reference Shor P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).CrossRef Shor P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).CrossRef
14.
go back to reference Steane A.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452, 2551–2577 (1996).MathSciNetCrossRef Steane A.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452, 2551–2577 (1996).MathSciNetCrossRef
16.
go back to reference Teirlinck L.: A completion of Lu’s determination of the spectrum for large sets of disjoint Steiner triple systems. J. Combin. Theory (A) 57, 302–305 (1991).MathSciNetCrossRef Teirlinck L.: A completion of Lu’s determination of the spectrum for large sets of disjoint Steiner triple systems. J. Combin. Theory (A) 57, 302–305 (1991).MathSciNetCrossRef
17.
go back to reference Zhou J., Chang Y.: Bounds on the dimensions of \(2\)-spontaneous emission error designs. J. Combin. Des. 24, 439–460 (2016).MathSciNetCrossRef Zhou J., Chang Y.: Bounds on the dimensions of \(2\)-spontaneous emission error designs. J. Combin. Des. 24, 439–460 (2016).MathSciNetCrossRef
Metadata
Title
2-(v, 5; m) spontaneous emission error designs
Authors
Bohua Zhu
Junling Zhou
Yanxun Chang
Publication date
30-01-2020
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 5/2020
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-020-00722-1

Other articles of this Issue 5/2020

Designs, Codes and Cryptography 5/2020 Go to the issue

Premium Partner