Skip to main content
Top
Published in: Designs, Codes and Cryptography 5/2020

20-01-2020

Do non-free LCD codes over finite commutative Frobenius rings exist?

Authors: Sanjit Bhowmick, Alexandre Fotue-Tabue, Edgar Martínez-Moro, Ramakrishna Bandi, Satya Bagchi

Published in: Designs, Codes and Cryptography | Issue 5/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we clarify some aspects of LCD codes in the literature. We first prove that non-free LCD codes do not exist over finite commutative Frobenius local rings. We then obtain a necessary and sufficient condition for the existence of LCD codes over a finite commutative Frobenius ring. We later show that a free constacyclic code over a finite chain ring is an LCD code if and only if it is reversible, and also provide a necessary and sufficient condition for a constacyclic code to be reversible. We illustrate the minimum Lee distance of LCD codes over some finite commutative chain rings with examples. We found some new optimal cyclic codes over \({\mathbb {Z}}_4\) of different lengths which are LCD codes using computer algebra system MAGMA.
Footnotes
1
\({\texttt {lcm}}(\pi (g_1), \pi (g_2))\): the least common multiple of \(\pi (g_1),\pi (g_2)\).
 
Literature
3.
go back to reference Carlet C., Guilley S.: Complementary dual codes for counter-measures to side-channel attacks. In: Pinto E.R., et al. (eds.) Coding Theory and Applications, vol. 3, pp. 97–105. CIM Series in Mathematical SciencesSpringer, Berlin (2014).CrossRef Carlet C., Guilley S.: Complementary dual codes for counter-measures to side-channel attacks. In: Pinto E.R., et al. (eds.) Coding Theory and Applications, vol. 3, pp. 97–105. CIM Series in Mathematical SciencesSpringer, Berlin (2014).CrossRef
4.
go back to reference Carlet C., Güneri C., Özbudak F., Ozkaya B., Solé P.: On linear complementary pairs of codes. IEEE Trans. Inf. Theory 64(10), 6583–6589 (2018).MathSciNetCrossRef Carlet C., Güneri C., Özbudak F., Ozkaya B., Solé P.: On linear complementary pairs of codes. IEEE Trans. Inf. Theory 64(10), 6583–6589 (2018).MathSciNetCrossRef
5.
go back to reference Carlet C., Mesnager S., Tang C.: Euclidean and Hermitian LCD MDS codes. Des. Codes Cryptogr. 86(11), 2606–2618 (2018).MathSciNetCrossRef Carlet C., Mesnager S., Tang C.: Euclidean and Hermitian LCD MDS codes. Des. Codes Cryptogr. 86(11), 2606–2618 (2018).MathSciNetCrossRef
6.
go back to reference Carlet C., Mesnager S., Tang C., Qi Y.: New characterization and parametrization of LCD codes. IEEE Trans. Inf. Theory 65, 39–49 (2018).MathSciNetCrossRef Carlet C., Mesnager S., Tang C., Qi Y.: New characterization and parametrization of LCD codes. IEEE Trans. Inf. Theory 65, 39–49 (2018).MathSciNetCrossRef
7.
go back to reference Carlet C., Mesnager S., Tang C., Qi Y., Pellikaan R.: Linear codes over \(F_q\) are equivalent to LCD codes for \(q>3\). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018). (Special Issue in honor of Solomon Golomb).CrossRef Carlet C., Mesnager S., Tang C., Qi Y., Pellikaan R.: Linear codes over \(F_q\) are equivalent to LCD codes for \(q>3\). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018). (Special Issue in honor of Solomon Golomb).CrossRef
8.
9.
go back to reference Dougherty S.T., Kim J.L., Ozkaya B., Sok L., Solé P.: The combinatorics of LCD codes: linear programming bound and orthogonal matrices. To appear in Int. J. Inf. Coding Theory (IJICOT). Dougherty S.T., Kim J.L., Ozkaya B., Sok L., Solé P.: The combinatorics of LCD codes: linear programming bound and orthogonal matrices. To appear in Int. J. Inf. Coding Theory (IJICOT).
10.
go back to reference Dougherty S.T., Yildiz B., Karadeniz S.: Codes over \(R_k\), Gray maps and their binary images. Finite Fields Appl. 17, 205–219 (2011).MathSciNetCrossRef Dougherty S.T., Yildiz B., Karadeniz S.: Codes over \(R_k\), Gray maps and their binary images. Finite Fields Appl. 17, 205–219 (2011).MathSciNetCrossRef
11.
go back to reference Fan Y., Ling S., Liu H.: Matrix product codes over finite commutative Frobenius rings. Des. Codes Cryptogr. 71, 201–227 (2014).MathSciNetCrossRef Fan Y., Ling S., Liu H.: Matrix product codes over finite commutative Frobenius rings. Des. Codes Cryptogr. 71, 201–227 (2014).MathSciNetCrossRef
14.
go back to reference Güneri C., Özbudak F., Ozkaya B., Sacikara E., Sepasdar Z., Solé P.: Structure and performance of generalized quasi-cyclic codes. Finite Fields Appl. 47, 183–202 (2017).MathSciNetCrossRef Güneri C., Özbudak F., Ozkaya B., Sacikara E., Sepasdar Z., Solé P.: Structure and performance of generalized quasi-cyclic codes. Finite Fields Appl. 47, 183–202 (2017).MathSciNetCrossRef
15.
16.
go back to reference Jin L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63(5), 2843–2847 (2017).MathSciNetMATH Jin L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63(5), 2843–2847 (2017).MathSciNetMATH
18.
19.
go back to reference Li S., Li C., Ding C., Liu H.: Two families of LCD BCH codes. IEEE Trans. Inf. Theory 63(9), 5699–5717 (2017).MathSciNetMATH Li S., Li C., Ding C., Liu H.: Two families of LCD BCH codes. IEEE Trans. Inf. Theory 63(9), 5699–5717 (2017).MathSciNetMATH
21.
go back to reference López-Permouth S.R., Ozadam H., Özbudak F., Szabo S.: Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes. Finite Fields Appl. 19, 16–38 (2013).MathSciNetCrossRef López-Permouth S.R., Ozadam H., Özbudak F., Szabo S.: Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes. Finite Fields Appl. 19, 16–38 (2013).MathSciNetCrossRef
24.
go back to reference McDonald B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974).MATH McDonald B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974).MATH
25.
go back to reference Norton G.H., Salagean A.: On the structure of linear and cyclic codes over finite chain rings. Appl. Algebra Eng. Commun. Comput. 10, 489–506 (2000).MathSciNetCrossRef Norton G.H., Salagean A.: On the structure of linear and cyclic codes over finite chain rings. Appl. Algebra Eng. Commun. Comput. 10, 489–506 (2000).MathSciNetCrossRef
26.
go back to reference Sendrier N.: Linear codes with complementary duals meet the Gilbert-Varshamov bound. Discret. Math. 285(1), 345–347 (2004).MathSciNetCrossRef Sendrier N.: Linear codes with complementary duals meet the Gilbert-Varshamov bound. Discret. Math. 285(1), 345–347 (2004).MathSciNetCrossRef
27.
go back to reference Tzeng K., Hartmann C.: On the minimum distance of certain reversible cyclic codes. IEEE Trans. Inf. Theory 16(5), 644–646 (1970).MathSciNetCrossRef Tzeng K., Hartmann C.: On the minimum distance of certain reversible cyclic codes. IEEE Trans. Inf. Theory 16(5), 644–646 (1970).MathSciNetCrossRef
28.
go back to reference Wieb B., John C., Catherine P.: The Magma algebra system I. The user language, computational algebra and number theory (London, 1993). J. Symb. Comput. 24(3–4), 235–265 (1997).MATH Wieb B., John C., Catherine P.: The Magma algebra system I. The user language, computational algebra and number theory (London, 1993). J. Symb. Comput. 24(3–4), 235–265 (1997).MATH
29.
go back to reference Wood J.: Duality for modules over finite rings and applications to coding theory. Am. J. Math. 121, 555–575 (1999).MathSciNetCrossRef Wood J.: Duality for modules over finite rings and applications to coding theory. Am. J. Math. 121, 555–575 (1999).MathSciNetCrossRef
30.
go back to reference Wu Y., Yue Q.: Factorizations of binomial polynomials and enumerations of LCD and self-dual constacyclic codes. IEEE Trans. Inf. Theory 65(3), 1740–1751 (2019).MathSciNetMATH Wu Y., Yue Q.: Factorizations of binomial polynomials and enumerations of LCD and self-dual constacyclic codes. IEEE Trans. Inf. Theory 65(3), 1740–1751 (2019).MathSciNetMATH
31.
go back to reference Yang X., Massey J.L.: The condition for a cyclic code to have a complementary dual. Discret. Math. 126, 391–393 (1994).MathSciNetCrossRef Yang X., Massey J.L.: The condition for a cyclic code to have a complementary dual. Discret. Math. 126, 391–393 (1994).MathSciNetCrossRef
Metadata
Title
Do non-free LCD codes over finite commutative Frobenius rings exist?
Authors
Sanjit Bhowmick
Alexandre Fotue-Tabue
Edgar Martínez-Moro
Ramakrishna Bandi
Satya Bagchi
Publication date
20-01-2020
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 5/2020
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-019-00713-x

Other articles of this Issue 5/2020

Designs, Codes and Cryptography 5/2020 Go to the issue

Premium Partner