Skip to main content
Top

2019 | OriginalPaper | Chapter

3. 2D Material Production Methods

Authors : Leonard W. T. Ng, Guohua Hu, Richard C. T. Howe, Xiaoxi Zhu, Zongyin Yang, Christopher G. Jones, Tawfique Hasan

Published in: Printing of Graphene and Related 2D Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The widespread use of printing of 2D materials in their relevant applications is highly dependent on the cost and scalability of their methods of production. This chapter serves as an introduction to the key methods for 2D material production and characterisation. Methods such as chemical vapour deposition, plasma cracking of hydrocarbons, intercalation, chemical exfoliation and liquid phase exfoliation are described and their relative merits are discussed. Particular emphasis is given to the 2D materials relevant to ink production. The latter half of the chapter discusses commonly used processing steps and characterisation methods for the 2D materials and their respective roles in qualifying and quantifying the material produced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Production and processing of graphene and 2D crystals. Mater. Today 15(12), 564–589 (2012)CrossRef F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Production and processing of graphene and 2D crystals. Mater. Today 15(12), 564–589 (2012)CrossRef
2.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef
3.
go back to reference K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005)CrossRef K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005)CrossRef
4.
go back to reference Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2339 (2013)CrossRef Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2339 (2013)CrossRef
5.
go back to reference J. Yu, J. Li, W. Zhang, H. Chang, Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6, 6705–6716 (2015)CrossRef J. Yu, J. Li, W. Zhang, H. Chang, Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6, 6705–6716 (2015)CrossRef
6.
go back to reference Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci. 41(3), 763–777 (2006)CrossRef Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci. 41(3), 763–777 (2006)CrossRef
7.
go back to reference G. Cunningham, M. Lotya, C.S. Cucinotta, S. Sanvito, S.D. Bergin, R. Menzel, M.S.P. Shaffer, J.N. Coleman, Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6(4), 3468–3480 (2012)CrossRef G. Cunningham, M. Lotya, C.S. Cucinotta, S. Sanvito, S.D. Bergin, R. Menzel, M.S.P. Shaffer, J.N. Coleman, Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6(4), 3468–3480 (2012)CrossRef
8.
go back to reference H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q. Xiong, H. Zhang, Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7(11), 10344–10353 (2013)CrossRef H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q. Xiong, H. Zhang, Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7(11), 10344–10353 (2013)CrossRef
9.
go back to reference R.F. Frindt, A.D. Yoffe, Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. A 273(1352), 69–83 (1963)CrossRef R.F. Frindt, A.D. Yoffe, Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. A 273(1352), 69–83 (1963)CrossRef
10.
go back to reference R.F. Frindt, Optical absorption of a few unit-cell layers of MoS2. Phys. Rev. 140(2A), A536–A539 (1965)CrossRef R.F. Frindt, Optical absorption of a few unit-cell layers of MoS2. Phys. Rev. 140(2A), A536–A539 (1965)CrossRef
11.
go back to reference R.F. Frindt, Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37(4), 1928–1929 (1966)CrossRef R.F. Frindt, Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37(4), 1928–1929 (1966)CrossRef
12.
go back to reference X. Lu, M. Yu, H. Huang, R.S. Ruoff, Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10(3), 269–272 (1999)CrossRef X. Lu, M. Yu, H. Huang, R.S. Ruoff, Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10(3), 269–272 (1999)CrossRef
13.
go back to reference A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef
14.
go back to reference S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRef S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRef
15.
go back to reference X. Chen, B. Wu, Y. Liu, Direct preparation of high quality graphene on dielectric substrates. Chem. Soc. Rev. 45(8), 2057–2074 (2016)CrossRef X. Chen, B. Wu, Y. Liu, Direct preparation of high quality graphene on dielectric substrates. Chem. Soc. Rev. 45(8), 2057–2074 (2016)CrossRef
16.
go back to reference Y. Chen, X.L. Gong, J.-G. Gai, Progress and challenges in transfer of large-area graphene films. Adv. Sci. 3(8), 1500343 (2016)CrossRef Y. Chen, X.L. Gong, J.-G. Gai, Progress and challenges in transfer of large-area graphene films. Adv. Sci. 3(8), 1500343 (2016)CrossRef
17.
go back to reference N. Petrone, C.R. Dean, I. Meric, A.M. van der Zande, P.Y. Huang, L. Wang, D. Muller, K.L. Shepard, J. Hone, Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12(6), 2751–2756 (2012)CrossRef N. Petrone, C.R. Dean, I. Meric, A.M. van der Zande, P.Y. Huang, L. Wang, D. Muller, K.L. Shepard, J. Hone, Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12(6), 2751–2756 (2012)CrossRef
18.
go back to reference G. Ruan, Z. Sun, Z. Peng, J.M. Tour, Growth of graphene from food, insects, and waste. ACS Nano 5(9), 7601–7607 (2011)CrossRef G. Ruan, Z. Sun, Z. Peng, J.M. Tour, Growth of graphene from food, insects, and waste. ACS Nano 5(9), 7601–7607 (2011)CrossRef
19.
go back to reference Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li, T.-W. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012)CrossRef Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li, T.-W. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012)CrossRef
20.
go back to reference K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, L.-J. Li, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538–1544 (2012)CrossRef K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, L.-J. Li, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538–1544 (2012)CrossRef
21.
go back to reference Y.-H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.-T. Chang, C.-S. Chang, M. Dresselhaus, T. Palacios, L.-J. Li, J. Kong, Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13(4), 1852–1857 (2013)CrossRef Y.-H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.-T. Chang, C.-S. Chang, M. Dresselhaus, T. Palacios, L.-J. Li, J. Kong, Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13(4), 1852–1857 (2013)CrossRef
22.
go back to reference S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.-C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754–759 (2013)CrossRef S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.-C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754–759 (2013)CrossRef
23.
go back to reference Z.J. Qi, S.J. Hong, J.A. Rodríguez-Manzo, N.J. Kybert, R. Gudibande, M. Drndić, Y.W. Park, A.T. Charlie Johnson, Electronic transport in heterostructures of chemical vapor deposited graphene and hexagonal boron nitride. Small 11(12), 1402–1408 (2015)CrossRef Z.J. Qi, S.J. Hong, J.A. Rodríguez-Manzo, N.J. Kybert, R. Gudibande, M. Drndić, Y.W. Park, A.T. Charlie Johnson, Electronic transport in heterostructures of chemical vapor deposited graphene and hexagonal boron nitride. Small 11(12), 1402–1408 (2015)CrossRef
24.
go back to reference W.J. Zhang, C.Y. Chan, K.M. Chan, I. Bello, Y. Lifshitz, S.T. Lee, Deposition of large-area, high-quality cubic boron nitride films by ECR-enhanced microwave-plasma CVD. Appl. Phys. Mater. Sci. Process. 76(6), 953–955 (2003)CrossRef W.J. Zhang, C.Y. Chan, K.M. Chan, I. Bello, Y. Lifshitz, S.T. Lee, Deposition of large-area, high-quality cubic boron nitride films by ECR-enhanced microwave-plasma CVD. Appl. Phys. Mater. Sci. Process. 76(6), 953–955 (2003)CrossRef
25.
go back to reference S.J. Cartamil-Bueno, M. Cavalieri, R. Wang, S. Houri, S. Hofmann, H.S.J. van der Zant, Mechanical characterization and cleaning of CVD single-layer h-BN resonators. NPJ 2D Mater. Appl. 1(1), 16 (2017) S.J. Cartamil-Bueno, M. Cavalieri, R. Wang, S. Houri, S. Hofmann, H.S.J. van der Zant, Mechanical characterization and cleaning of CVD single-layer h-BN resonators. NPJ 2D Mater. Appl. 1(1), 16 (2017)
26.
go back to reference A. Gurarslan, Y. Yu, L. Su, Y. Yu, F. Suarez, S. Yao, Y. Zhu, M. Ozturk, Y. Zhang, L. Cao, Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 8(11), 11522–11528 (2014)CrossRef A. Gurarslan, Y. Yu, L. Su, Y. Yu, F. Suarez, S. Yao, Y. Zhu, M. Ozturk, Y. Zhang, L. Cao, Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 8(11), 11522–11528 (2014)CrossRef
27.
go back to reference G.H. Han, J.A. Rodríguez-Manzo, C.W. Lee, N.J. Kybert, M.B. Lerner, Z.J. Qi, E.N. Dattoli, A.M. Rappe, M. Drndic, A.T.C. Johnson, Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition. ACS Nano 7(11), 10129–10138 (2013)CrossRef G.H. Han, J.A. Rodríguez-Manzo, C.W. Lee, N.J. Kybert, M.B. Lerner, Z.J. Qi, E.N. Dattoli, A.M. Rappe, M. Drndic, A.T.C. Johnson, Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition. ACS Nano 7(11), 10129–10138 (2013)CrossRef
28.
go back to reference M. Wang, S.K. Jang, W.J. Jang, M. Kim, S.Y. Park, S.W. Kim, S.J. Kahng, J.Y. Choi, R.S. Ruoff, Y.J. Song, S. Lee, A platform for large-scale graphene electronics - CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 25(19), 2746–2752 (2013)CrossRef M. Wang, S.K. Jang, W.J. Jang, M. Kim, S.Y. Park, S.W. Kim, S.J. Kahng, J.Y. Choi, R.S. Ruoff, Y.J. Song, S. Lee, A platform for large-scale graphene electronics - CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 25(19), 2746–2752 (2013)CrossRef
29.
go back to reference K.H. Lee, H.J. Shin, J. Lee, I.Y. Lee, G.H. Kim, J.Y. Choi, S.W. Kim, Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 12(2), 714–718 (2012)CrossRef K.H. Lee, H.J. Shin, J. Lee, I.Y. Lee, G.H. Kim, J.Y. Choi, S.W. Kim, Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 12(2), 714–718 (2012)CrossRef
30.
go back to reference K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Dresselhaust, T. Palacios, J. Kong, Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6(10), 8583–8590 (2012)CrossRef K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Dresselhaust, T. Palacios, J. Kong, Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6(10), 8583–8590 (2012)CrossRef
31.
go back to reference B.C. Bayer, S. Caneva, T.J. Pennycook, J. Kotakoski, C. Mangler, S. Hofmann, J.C. Meyer, Introducing overlapping grain boundaries in chemical vapor deposited hexagonal boron nitride monolayer films. ACS Nano 11(5), 4521–4527 (2017)CrossRef B.C. Bayer, S. Caneva, T.J. Pennycook, J. Kotakoski, C. Mangler, S. Hofmann, J.C. Meyer, Introducing overlapping grain boundaries in chemical vapor deposited hexagonal boron nitride monolayer films. ACS Nano 11(5), 4521–4527 (2017)CrossRef
32.
go back to reference T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, D. Hobara, Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102(2), 023112 (2013)CrossRef T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, D. Hobara, Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102(2), 023112 (2013)CrossRef
33.
go back to reference J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C.W. Magnuson, R.S. Ruoff, L. Colombo, R.M. Wallace, E.M. Vogel, Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition. ACS Nano 6(4), 3224–3229 (2012)CrossRef J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C.W. Magnuson, R.S. Ruoff, L. Colombo, R.M. Wallace, E.M. Vogel, Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition. ACS Nano 6(4), 3224–3229 (2012)CrossRef
34.
go back to reference L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers, F. Haupt, K. Watanabe, T. Taniguchi, B. Beschoten, C. Stampfer, Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1(6), e1500222 (2015)CrossRef L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers, F. Haupt, K. Watanabe, T. Taniguchi, B. Beschoten, C. Stampfer, Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1(6), e1500222 (2015)CrossRef
35.
go back to reference Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, K.P. Loh, Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5(12), 9927–9933 (2011)CrossRef Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, K.P. Loh, Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5(12), 9927–9933 (2011)CrossRef
36.
go back to reference H. Zhang, T. Cao, Y. Cheng, Preparation of few-layer graphene nanosheets by radio-frequency induction thermal plasma. Carbon 86, 38–45 (2015)CrossRef H. Zhang, T. Cao, Y. Cheng, Preparation of few-layer graphene nanosheets by radio-frequency induction thermal plasma. Carbon 86, 38–45 (2015)CrossRef
37.
go back to reference M. Tian, S. Batty, C. Shang, Synthesis of nanostructured carbons by the microwave plasma cracking of methane. Carbon 51(1), 243–248 (2013)CrossRef M. Tian, S. Batty, C. Shang, Synthesis of nanostructured carbons by the microwave plasma cracking of methane. Carbon 51(1), 243–248 (2013)CrossRef
38.
go back to reference K.S. Kim, S.H. Hong, K.-S. Lee, W.T. Ju, Continuous synthesis of nanostructured sheetlike carbons by thermal plasma decomposition of methane. IEEE Trans. Plasma Sci. 35(2), 434–443 (2007)CrossRef K.S. Kim, S.H. Hong, K.-S. Lee, W.T. Ju, Continuous synthesis of nanostructured sheetlike carbons by thermal plasma decomposition of methane. IEEE Trans. Plasma Sci. 35(2), 434–443 (2007)CrossRef
39.
go back to reference R. Pristavita, J.L. Meunier, D. Berk, Carbon nano-flakes produced by an inductively coupled thermal plasma system for catalyst applications. Plasma Chem. Plasma Process. 31(2), 393–403 (2011)CrossRef R. Pristavita, J.L. Meunier, D. Berk, Carbon nano-flakes produced by an inductively coupled thermal plasma system for catalyst applications. Plasma Chem. Plasma Process. 31(2), 393–403 (2011)CrossRef
40.
go back to reference A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 8(7), 2012–2016 (2008)CrossRef A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 8(7), 2012–2016 (2008)CrossRef
41.
go back to reference V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419 (2013)CrossRef V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419 (2013)CrossRef
42.
go back to reference M.S. Dresselhaus, G. Dresselhaus, Intercalation compounds of graphite. Adv. Phys. 30(2), 139–326 (1981)CrossRef M.S. Dresselhaus, G. Dresselhaus, Intercalation compounds of graphite. Adv. Phys. 30(2), 139–326 (1981)CrossRef
43.
go back to reference P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21(4), 457–461 (1986)CrossRef P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21(4), 457–461 (1986)CrossRef
44.
go back to reference X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 3(9), 538–542 (2008)CrossRef X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 3(9), 538–542 (2008)CrossRef
45.
go back to reference C. Valles, C. Drummond, H. Saadaoui, C.A. Furtado, M. He, O. Roubeau, L. Ortolani, M. Monthioux, Alain Pénicaud, Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130(47), 15802–15804 (2008)CrossRef C. Valles, C. Drummond, H. Saadaoui, C.A. Furtado, M. He, O. Roubeau, L. Ortolani, M. Monthioux, Alain Pénicaud, Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130(47), 15802–15804 (2008)CrossRef
46.
go back to reference Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H.H. Hng, H. Zhang, An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51(36), 9052–9056 (2012)CrossRef Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H.H. Hng, H. Zhang, An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51(36), 9052–9056 (2012)CrossRef
47.
go back to reference J. Zheng, H. Zhang, S. Dong, Y. Liu, C. Tai Nai, H. Suk Shin, H. Young Jeong, B. Liu, K. Ping Loh, High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014) J. Zheng, H. Zhang, S. Dong, Y. Liu, C. Tai Nai, H. Suk Shin, H. Young Jeong, B. Liu, K. Ping Loh, High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014)
48.
go back to reference G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011)CrossRef G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011)CrossRef
49.
go back to reference Y. Jung, Y. Zhou, J.J. Cha, Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front. 3(4), 452–463 (2016)CrossRef Y. Jung, Y. Zhou, J.J. Cha, Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front. 3(4), 452–463 (2016)CrossRef
50.
go back to reference J. Liu, H. Yang, S.G. Zhen, C.K. Poh, A. Chaurasia, J. Luo, X. Wu, E.K.L. Yeow, N.G. Sahoo, J. Lin, Z. Shen, A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. RSC Adv. 3(29), 11745–11750 (2013)CrossRef J. Liu, H. Yang, S.G. Zhen, C.K. Poh, A. Chaurasia, J. Luo, X. Wu, E.K.L. Yeow, N.G. Sahoo, J. Lin, Z. Shen, A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. RSC Adv. 3(29), 11745–11750 (2013)CrossRef
51.
go back to reference Z.Y. Xia, S. Pezzini, E. Treossi, G. Giambastiani, F. Corticelli, V. Morandi, A. Zanelli, V. Bellani, V. Palermo, The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv. Funct. Mater. 23(37), 4684–4693 (2013)CrossRef Z.Y. Xia, S. Pezzini, E. Treossi, G. Giambastiani, F. Corticelli, V. Morandi, A. Zanelli, V. Bellani, V. Palermo, The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv. Funct. Mater. 23(37), 4684–4693 (2013)CrossRef
52.
go back to reference K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, K. Müllen, Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7(4), 3598–3606 (2013)CrossRef K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, K. Müllen, Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7(4), 3598–3606 (2013)CrossRef
53.
go back to reference K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136(16), 6083–6091 (2014)CrossRef K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136(16), 6083–6091 (2014)CrossRef
54.
go back to reference Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. 50(47), 11093–11097 (2011)CrossRef Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. 50(47), 11093–11097 (2011)CrossRef
55.
go back to reference C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A.N. Khlobystov, L.-J. Li, High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5(3), 2332–2339 (2011)CrossRef C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A.N. Khlobystov, L.-J. Li, High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5(3), 2332–2339 (2011)CrossRef
56.
go back to reference N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518–1525 (2008)CrossRef N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518–1525 (2008)CrossRef
57.
go back to reference J.H. Lee, D.W. Shin, V.G. Makotchenko, A.S. Nazarov, V.E. Fedorov, Y.H. Kim, J.-Y. Choi, J.M. Kim, J.-B. Yoo, One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets. Adv. Mater. 21(43), 4383–4387 (2009)CrossRef J.H. Lee, D.W. Shin, V.G. Makotchenko, A.S. Nazarov, V.E. Fedorov, Y.H. Kim, J.-Y. Choi, J.M. Kim, J.-B. Yoo, One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets. Adv. Mater. 21(43), 4383–4387 (2009)CrossRef
58.
go back to reference S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)CrossRef S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)CrossRef
59.
go back to reference G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)CrossRef G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)CrossRef
60.
go back to reference C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19(16), 2577–2583 (2009)CrossRef C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19(16), 2577–2583 (2009)CrossRef
61.
go back to reference G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)CrossRef G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)CrossRef
62.
go back to reference S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009)CrossRef S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009)CrossRef
63.
go back to reference K.P. Loh, Q. Bao, P.K. Ang, J. Yang, The chemistry of graphene. J. Mater. Chem. 20(12), 2277 (2010)CrossRef K.P. Loh, Q. Bao, P.K. Ang, J. Yang, The chemistry of graphene. J. Mater. Chem. 20(12), 2277 (2010)CrossRef
64.
go back to reference D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010)CrossRef D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010)CrossRef
65.
go back to reference W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)CrossRef W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)CrossRef
66.
go back to reference A. Buchsteiner, A. Lerf, J. Pieper, Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B 110(45), 22328–22338 (2006)CrossRef A. Buchsteiner, A. Lerf, J. Pieper, Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B 110(45), 22328–22338 (2006)CrossRef
67.
go back to reference Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8(6), 1679–1682 (2008)CrossRef Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8(6), 1679–1682 (2008)CrossRef
68.
go back to reference S. Wang, P.K. Ang, Z. Wang, A.L.L. Tang, J.T.L. Thong, K.P. Loh, High mobility, printable, and solution-processed graphene electronics. Nano Lett. 10(1), 92–98 (2010)CrossRef S. Wang, P.K. Ang, Z. Wang, A.L.L. Tang, J.T.L. Thong, K.P. Loh, High mobility, printable, and solution-processed graphene electronics. Nano Lett. 10(1), 92–98 (2010)CrossRef
69.
go back to reference L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, W.Y. Lee, Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355–358 (2011)CrossRef L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, W.Y. Lee, Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355–358 (2011)CrossRef
70.
go back to reference J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, B.H. Weiller, Practical chemical sensors from chemically derived graphene. ACS Nano 3(2), 301–306 (2009)CrossRef J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, B.H. Weiller, Practical chemical sensors from chemically derived graphene. ACS Nano 3(2), 301–306 (2009)CrossRef
71.
go back to reference J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang, L. Zhi, Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 24(21), 2874–2878 (2012)CrossRef J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang, L. Zhi, Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 24(21), 2874–2878 (2012)CrossRef
72.
go back to reference Y. Yang, Z. Liu, Z. Yin, Z. Du, L. Xie, M. Yi, J. Liu, W. Huang, Rod-coating all-solution fabrication of double functional graphene oxide films for flexible alternating current (AC)-driven light-emitting diodes. RSC Adv. 4(98), 55671–55676 (2014)CrossRef Y. Yang, Z. Liu, Z. Yin, Z. Du, L. Xie, M. Yi, J. Liu, W. Huang, Rod-coating all-solution fabrication of double functional graphene oxide films for flexible alternating current (AC)-driven light-emitting diodes. RSC Adv. 4(98), 55671–55676 (2014)CrossRef
73.
go back to reference S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)CrossRef S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)CrossRef
74.
go back to reference J. Xu, J. Liu, S. Wu, Q.-H. Yang, P. Wang, Graphene oxide mode-locked femtosecond erbium-doped fiber lasers. Opt. Express 20(14), 15474–15480 (2012)CrossRef J. Xu, J. Liu, S. Wu, Q.-H. Yang, P. Wang, Graphene oxide mode-locked femtosecond erbium-doped fiber lasers. Opt. Express 20(14), 15474–15480 (2012)CrossRef
75.
go back to reference Y.J. Noh, H.-I. Joh, J. Yu, S.H. Hwang, S. Lee, C.H. Lee, S.Y. Kim, J.R. Youn, Ultra-high dispersion of graphene in polymer composite via solvent free fabrication and functionalization. Sci. Rep. 5, 9141 (2015) Y.J. Noh, H.-I. Joh, J. Yu, S.H. Hwang, S. Lee, C.H. Lee, S.Y. Kim, J.R. Youn, Ultra-high dispersion of graphene in polymer composite via solvent free fabrication and functionalization. Sci. Rep. 5, 9141 (2015)
76.
go back to reference R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36(5), 638–670 (2011)CrossRef R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36(5), 638–670 (2011)CrossRef
77.
go back to reference S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9), 3019–3023 (2011)CrossRef S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9), 3019–3023 (2011)CrossRef
78.
go back to reference S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)CrossRef S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)CrossRef
79.
go back to reference Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21(13), 2950–2956 (2009)CrossRef Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21(13), 2950–2956 (2009)CrossRef
80.
go back to reference A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2(7), 581–587 (2010)CrossRef A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2(7), 581–587 (2010)CrossRef
81.
go back to reference Y.B. Tan, J.-M. Lee, Graphene for supercapacitor applications. J. Mater. Chem. A 1(47), 14814 (2013)CrossRef Y.B. Tan, J.-M. Lee, Graphene for supercapacitor applications. J. Mater. Chem. A 1(47), 14814 (2013)CrossRef
82.
go back to reference N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4(2), 887–894 (2010)CrossRef N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4(2), 887–894 (2010)CrossRef
83.
go back to reference K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2(12), 1015–1024 (2010)CrossRef K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2(12), 1015–1024 (2010)CrossRef
84.
go back to reference K.K.H. De Silva, H.-H. Huang, R.K. Joshi, M. Yoshimura, Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017)CrossRef K.K.H. De Silva, H.-H. Huang, R.K. Joshi, M. Yoshimura, Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017)CrossRef
85.
go back to reference L.G. Guex, B. Sacchi, K.F. Peuvot, R.L. Andersson, A.M. Pourrahimi, V. Ström, S. Farris, R.T. Olsson, Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9(27), 9562–9571 (2017)CrossRef L.G. Guex, B. Sacchi, K.F. Peuvot, R.L. Andersson, A.M. Pourrahimi, V. Ström, S. Farris, R.T. Olsson, Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9(27), 9562–9571 (2017)CrossRef
86.
go back to reference F.J. Tölle, M. Fabritius, R. Mülhaupt, Emulsifier-free graphene dispersions with high graphene content for printed electronics and freestanding graphene films. Adv. Funct. Mater. 22, 1136–1144 (2012)CrossRef F.J. Tölle, M. Fabritius, R. Mülhaupt, Emulsifier-free graphene dispersions with high graphene content for printed electronics and freestanding graphene films. Adv. Funct. Mater. 22, 1136–1144 (2012)CrossRef
87.
go back to reference T. Hasan, V. Scardaci, P. Tan, A.G. Rozhin, W.I. Milne, A.C. Ferrari, Stabilization and “debundling” of single-wall carbon nanotube dispersions in N-Methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). J. Phys. Chem. C 111(34), 12594–12602 (2007)CrossRef T. Hasan, V. Scardaci, P. Tan, A.G. Rozhin, W.I. Milne, A.C. Ferrari, Stabilization and “debundling” of single-wall carbon nanotube dispersions in N-Methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). J. Phys. Chem. C 111(34), 12594–12602 (2007)CrossRef
88.
go back to reference T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 21(38), 3874–3899 (2009)CrossRef T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 21(38), 3874–3899 (2009)CrossRef
89.
go back to reference Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)CrossRef Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)CrossRef
90.
go back to reference J.N. Coleman, Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19(23), 3680–3695 (2009)CrossRef J.N. Coleman, Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19(23), 3680–3695 (2009)CrossRef
91.
go back to reference F. Bonaccorso, A. Bartolotta, J.N. Coleman, C. Backes, 2D-crystal-based functional inks. Adv. Mater. 28(29), 6136–6166 (2016)CrossRef F. Bonaccorso, A. Bartolotta, J.N. Coleman, C. Backes, 2D-crystal-based functional inks. Adv. Mater. 28(29), 6136–6166 (2016)CrossRef
92.
go back to reference J.N. Coleman, Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 46(1), 14–22 (2013)CrossRef J.N. Coleman, Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 46(1), 14–22 (2013)CrossRef
93.
go back to reference J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011)CrossRef J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011)CrossRef
94.
go back to reference D. Hanlon, C. Backes, E. Doherty, C.S. Cucinotta, N.C. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. Zhang, K. Wang, G. Moynihan, A. Pokle, Q.M. Ramasse, N. McEvoy, W.J. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D.D. O’Regan, G.S. Duesberg, V. Nicolosi, J.N. Coleman, Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015) D. Hanlon, C. Backes, E. Doherty, C.S. Cucinotta, N.C. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. Zhang, K. Wang, G. Moynihan, A. Pokle, Q.M. Ramasse, N. McEvoy, W.J. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D.D. O’Regan, G.S. Duesberg, V. Nicolosi, J.N. Coleman, Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015)
95.
go back to reference T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, A.C. Ferrari, Solution-phase exfoliation of graphite for ultrafast photonics. Phys. Status Solidi B 247(11–12), 2953–2957 (2010)CrossRef T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, A.C. Ferrari, Solution-phase exfoliation of graphite for ultrafast photonics. Phys. Status Solidi B 247(11–12), 2953–2957 (2010)CrossRef
96.
go back to reference S. Santra, G. Hu, R.C.T. Howe, A. De Luca, S.Z. Ali, F. Udrea, J.W. Gardner, S.K. Ray, P.K. Guha, T. Hasan, CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5, 17374 (2015) S. Santra, G. Hu, R.C.T. Howe, A. De Luca, S.Z. Ali, F. Udrea, J.W. Gardner, S.K. Ray, P.K. Guha, T. Hasan, CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5, 17374 (2015)
97.
go back to reference R.C.T. Howe, G. Hu, Z. Yang, T. Hasan, Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proc. SPIE 9553, 95530R (2015) R.C.T. Howe, G. Hu, Z. Yang, T. Hasan, Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proc. SPIE 9553, 95530R (2015)
98.
go back to reference Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, Graphene mode-locked ultrafast laser. ACS Nano 4(2), 803–810 (2010)CrossRef Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, Graphene mode-locked ultrafast laser. ACS Nano 4(2), 803–810 (2010)CrossRef
99.
go back to reference A. Harvey, J.B. Boland, I. Godwin, A.G. Kelly, B.M. Szydłowska, G. Murtaza, A. Thomas, D.J. Lewis, P. O’Brien, J.N. Coleman, Exploring the versatility of liquid phase exfoliation: producing 2D nanosheets from talcum powder, cat litter and beach sand. 2D Mater. 4(2), 25054 (2017)CrossRef A. Harvey, J.B. Boland, I. Godwin, A.G. Kelly, B.M. Szydłowska, G. Murtaza, A. Thomas, D.J. Lewis, P. O’Brien, J.N. Coleman, Exploring the versatility of liquid phase exfoliation: producing 2D nanosheets from talcum powder, cat litter and beach sand. 2D Mater. 4(2), 25054 (2017)CrossRef
100.
go back to reference J.M. Hughes, D. Aherne, J.N. Coleman, Generalizing solubility parameter theory to apply to one- and two-dimensional solutes and to incorporate dipolar interactions. J. Appl. Polym. Sci. 127(6), 4483–4491 (2013)CrossRef J.M. Hughes, D. Aherne, J.N. Coleman, Generalizing solubility parameter theory to apply to one- and two-dimensional solutes and to incorporate dipolar interactions. J. Appl. Polym. Sci. 127(6), 4483–4491 (2013)CrossRef
101.
go back to reference K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O’Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J.N. Coleman, Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13(6), 624–630 (2014)CrossRef K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O’Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J.N. Coleman, Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13(6), 624–630 (2014)CrossRef
102.
go back to reference E. Varrla, C. Backes, K.R. Paton, A. Harvey, Z. Gholamvand, J. McCauley, J.N. Coleman, Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem. Mater. 27(3), 1129–1139 (2015)CrossRef E. Varrla, C. Backes, K.R. Paton, A. Harvey, Z. Gholamvand, J. McCauley, J.N. Coleman, Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem. Mater. 27(3), 1129–1139 (2015)CrossRef
103.
go back to reference E. Varrla, K.R. Paton, C. Backes, A. Harvey, R.J. Smith, J. McCauley, J.N. Coleman, Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale 6(20), 11810–11819 (2014)CrossRef E. Varrla, K.R. Paton, C. Backes, A. Harvey, R.J. Smith, J. McCauley, J.N. Coleman, Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale 6(20), 11810–11819 (2014)CrossRef
104.
go back to reference J. Shang, F. Xue, E. Ding, The facile fabrication of few-layer graphene and graphite nanosheets by high pressure homogenization. Chem. Commun. 51(87), 15811–15814 (2015)CrossRef J. Shang, F. Xue, E. Ding, The facile fabrication of few-layer graphene and graphite nanosheets by high pressure homogenization. Chem. Commun. 51(87), 15811–15814 (2015)CrossRef
105.
go back to reference F. Xue, E. Ding, J. Shang, Efficient exfoliation of molybdenum disulphide nanosheets by a high-pressure homogeniser. Micro Nano Lett. 10(10), 589–591 (2015) F. Xue, E. Ding, J. Shang, Efficient exfoliation of molybdenum disulphide nanosheets by a high-pressure homogeniser. Micro Nano Lett. 10(10), 589–591 (2015)
106.
go back to reference T.J. Nacken, C. Damm, J. Walter, A. Rüger, W. Peukert, Delamination of graphite in a high pressure homogenizer. RSC Adv. 5(71), 57328–57338 (2015)CrossRef T.J. Nacken, C. Damm, J. Walter, A. Rüger, W. Peukert, Delamination of graphite in a high pressure homogenizer. RSC Adv. 5(71), 57328–57338 (2015)CrossRef
107.
go back to reference P.G. Karagiannidis, S.A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde, S. Milana, I. Goykhman, Y. Su, S.V. Mesite, D.N. Johnstone, R.K. Leary, P.A. Midgley, N.M. Pugno, F. Torrisi, A.C. Ferrari, Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11(3), 2742–2755 (2017)CrossRef P.G. Karagiannidis, S.A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde, S. Milana, I. Goykhman, Y. Su, S.V. Mesite, D.N. Johnstone, R.K. Leary, P.A. Midgley, N.M. Pugno, F. Torrisi, A.C. Ferrari, Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11(3), 2742–2755 (2017)CrossRef
108.
go back to reference M.A. Ibrahem, T.-W. Lan, J.K. Huang, Y.-Y. Chen, K.-H. Wei, L.-J. Li, C.W. Chu. High quantity and quality few-layers transition metal disulfide nanosheets from wet-milling exfoliation. RSC Adv. 3(32), 13193 (2013)CrossRef M.A. Ibrahem, T.-W. Lan, J.K. Huang, Y.-Y. Chen, K.-H. Wei, L.-J. Li, C.W. Chu. High quantity and quality few-layers transition metal disulfide nanosheets from wet-milling exfoliation. RSC Adv. 3(32), 13193 (2013)CrossRef
109.
go back to reference W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, G. Chen, Preparation of graphene by exfoliation of graphite using wet ball milling. J. Mater. Chem. 20(28), 5817 (2010)CrossRef W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, G. Chen, Preparation of graphene by exfoliation of graphite using wet ball milling. J. Mater. Chem. 20(28), 5817 (2010)CrossRef
110.
go back to reference Y. Yao, Z. Lin, Z. Li, X. Song, K.-S. Moon, C.-P. Wong, Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 22(27), 13494 (2012)CrossRef Y. Yao, Z. Lin, Z. Li, X. Song, K.-S. Moon, C.-P. Wong, Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 22(27), 13494 (2012)CrossRef
111.
go back to reference L.H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, A.M. Glushenkov, Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. J. Mater. Chem. 21(32), 11862 (2011)CrossRef L.H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, A.M. Glushenkov, Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. J. Mater. Chem. 21(32), 11862 (2011)CrossRef
112.
go back to reference T.J. Mason, J.P. Lorimer, Applied Sonochemistry (Wiley-VCH, Weinheim, 2002) T.J. Mason, J.P. Lorimer, Applied Sonochemistry (Wiley-VCH, Weinheim, 2002)
113.
go back to reference S.Y. Tang, P. Shridharan, M. Sivakumar, Impact of process parameters in the generation of novel aspirin nanoemulsions - comparative studies between ultrasound cavitation and microfluidizer. Ultrason. Sonochem. 20(1), 485–497 (2013)CrossRef S.Y. Tang, P. Shridharan, M. Sivakumar, Impact of process parameters in the generation of novel aspirin nanoemulsions - comparative studies between ultrasound cavitation and microfluidizer. Ultrason. Sonochem. 20(1), 485–497 (2013)CrossRef
114.
go back to reference A. Posch, 2D PAGE: Sample Preparation and Fractionation (Humana Press, Clifton, 2008) A. Posch, 2D PAGE: Sample Preparation and Fractionation (Humana Press, Clifton, 2008)
115.
go back to reference T. Panagiotou, S.V. Mesite, J.M. Bernard, K.J. Chomistek, R.J. Fisher, Production of polymer nanosuspensions using microfluidizer processor based technologies, in NSTI-Nanotech 2008, vol. 1 (2008), pp. 688–691 T. Panagiotou, S.V. Mesite, J.M. Bernard, K.J. Chomistek, R.J. Fisher, Production of polymer nanosuspensions using microfluidizer processor based technologies, in NSTI-Nanotech 2008, vol. 1 (2008), pp. 688–691
116.
go back to reference T. Lajunen, K. Hisazumi, T. Kanazawa, H. Okada, Y. Seta, M. Yliperttula, A. Urtti, Y. Takashima, Topical drug delivery to retinal pigment epithelium with microfluidizer produced small liposomes. Eur. J. Pharm. Sci. 62, 23–32 (2014)CrossRef T. Lajunen, K. Hisazumi, T. Kanazawa, H. Okada, Y. Seta, M. Yliperttula, A. Urtti, Y. Takashima, Topical drug delivery to retinal pigment epithelium with microfluidizer produced small liposomes. Eur. J. Pharm. Sci. 62, 23–32 (2014)CrossRef
117.
go back to reference S.M. Jafari, Y. He, B. Bhandari, Production of sub-micron emulsions by ultrasound and microfluidization techniques. J. Food Eng. 82(4), 478–488 (2007)CrossRef S.M. Jafari, Y. He, B. Bhandari, Production of sub-micron emulsions by ultrasound and microfluidization techniques. J. Food Eng. 82(4), 478–488 (2007)CrossRef
118.
go back to reference D. Lee, B. Lee, K.H. Park, H.J. Ryu, S. Jeon, S.H. Hong, Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Lett. 15(2), 1238–1244 (2015)CrossRef D. Lee, B. Lee, K.H. Park, H.J. Ryu, S. Jeon, S.H. Hong, Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Lett. 15(2), 1238–1244 (2015)CrossRef
119.
go back to reference T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, A.C. Ferrari, Solution-phase exfoliation of graphite for ultrafast photonics. Phys. Status Solidi 247(11), 2953–2957 (2010)CrossRef T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, A.C. Ferrari, Solution-phase exfoliation of graphite for ultrafast photonics. Phys. Status Solidi 247(11), 2953–2957 (2010)CrossRef
120.
go back to reference Y. Hernandez, M. Lotya, D. Rickard, S.D. Bergin, J.N. Coleman, Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26(5), 3208–3213 (2010)CrossRef Y. Hernandez, M. Lotya, D. Rickard, S.D. Bergin, J.N. Coleman, Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26(5), 3208–3213 (2010)CrossRef
121.
go back to reference C.M. Hansen, Hansen Solubility Parameters: A User’s Handbook (CRC Press, West Palm Beach, 2007) C.M. Hansen, Hansen Solubility Parameters: A User’s Handbook (CRC Press, West Palm Beach, 2007)
122.
go back to reference A. Ciesielski, P. Samorì, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43(1), 381–398 (2014)CrossRef A. Ciesielski, P. Samorì, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43(1), 381–398 (2014)CrossRef
123.
go back to reference C.L. Yaws, The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals, 2nd edn. (Elsevier Science, New York , 2015)CrossRef C.L. Yaws, The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals, 2nd edn. (Elsevier Science, New York , 2015)CrossRef
124.
go back to reference M. Yi, Z. Shen, S. Ma, X. Zhang, A mixed-solvent strategy for facile and green preparation of graphene by liquid-phase exfoliation of graphite. J. Nanoparticle Res. 14(8), 1003 (2012) M. Yi, Z. Shen, S. Ma, X. Zhang, A mixed-solvent strategy for facile and green preparation of graphene by liquid-phase exfoliation of graphite. J. Nanoparticle Res. 14(8), 1003 (2012)
125.
go back to reference K.-G. Zhou, N.-N. Mao, H.-X. Wang, Y. Peng, H.-L. Zhang, A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. 50(46), 10839–10842 (2011)CrossRef K.-G. Zhou, N.-N. Mao, H.-X. Wang, Y. Peng, H.-L. Zhang, A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. 50(46), 10839–10842 (2011)CrossRef
126.
go back to reference R.C.T. Howe, F. Torrisi, F. Tomarchio, S. Mignuzzi, A.C. Ferrari, T. Hasan, Large-scale exfoliation of molybdenum disulphide in solvent mixtures, in ImagineNano (2013) R.C.T. Howe, F. Torrisi, F. Tomarchio, S. Mignuzzi, A.C. Ferrari, T. Hasan, Large-scale exfoliation of molybdenum disulphide in solvent mixtures, in ImagineNano (2013)
127.
go back to reference E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRef E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRef
128.
go back to reference E.B. Secor, B.Y. Ahn, T.Z. Gao, J.A. Lewis, M.C. Hersam, Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv. Mater. 27(42), 6683–6688 (2015)CrossRef E.B. Secor, B.Y. Ahn, T.Z. Gao, J.A. Lewis, M.C. Hersam, Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv. Mater. 27(42), 6683–6688 (2015)CrossRef
129.
go back to reference D. Dodoo-Arhin, R.C.T. Howe, G. Hu, Y. Zhang, P. Hiralal, A. Bello, G. Amaratunga, T. Hasan, Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon 105, 33–41 (2016)CrossRef D. Dodoo-Arhin, R.C.T. Howe, G. Hu, Y. Zhang, P. Hiralal, A. Bello, G. Amaratunga, T. Hasan, Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon 105, 33–41 (2016)CrossRef
130.
go back to reference F. Bonaccorso, Z. Sun, Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics. Opt. Mater. Express 4(1), 63–78 (2014)CrossRef F. Bonaccorso, Z. Sun, Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics. Opt. Mater. Express 4(1), 63–78 (2014)CrossRef
131.
go back to reference H.-J. Butt, K. Graff, M. Kappl, Physics and Chemistry of Interfaces, 3rd edn. (Wiley-VCH, Weinheim, 2013) H.-J. Butt, K. Graff, M. Kappl, Physics and Chemistry of Interfaces, 3rd edn. (Wiley-VCH, Weinheim, 2013)
132.
go back to reference M.J. Rosen, J.T. Kunjappu, Surfactants and Interfacial Phenomena, 4th edn. (Wiley, Hoboken, 2012)CrossRef M.J. Rosen, J.T. Kunjappu, Surfactants and Interfacial Phenomena, 4th edn. (Wiley, Hoboken, 2012)CrossRef
133.
go back to reference R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G.S. Duesberg, J.C. Grunlan, G. Moriarty, J. Chen, J. Wang, A.I. Minett, V. Nicolosi, J.N. Coleman, Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23(34), 3944–3948 (2011)CrossRef R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G.S. Duesberg, J.C. Grunlan, G. Moriarty, J. Chen, J. Wang, A.I. Minett, V. Nicolosi, J.N. Coleman, Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23(34), 3944–3948 (2011)CrossRef
134.
go back to reference R.C.T. Howe, R.I. Woodward, G. Hu, Z. Yang, E.J.R. Kelleher, T. Hasan, Surfactant-aided exfoliation of molybdenum disulfide for ultrafast pulse generation through edge-state saturable absorption. Phys. Status Solidi 253(5), 911–917 (2016)CrossRef R.C.T. Howe, R.I. Woodward, G. Hu, Z. Yang, E.J.R. Kelleher, T. Hasan, Surfactant-aided exfoliation of molybdenum disulfide for ultrafast pulse generation through edge-state saturable absorption. Phys. Status Solidi 253(5), 911–917 (2016)CrossRef
135.
go back to reference P. Ramalingam, S.T. Pusuluri, S. Periasamy, R. Veerabahu, J. Kulandaivel, Role of deoxy group on the high concentration of graphene in surfactant/water media. RSC Adv. 3, 2369 (2013)CrossRef P. Ramalingam, S.T. Pusuluri, S. Periasamy, R. Veerabahu, J. Kulandaivel, Role of deoxy group on the high concentration of graphene in surfactant/water media. RSC Adv. 3, 2369 (2013)CrossRef
136.
go back to reference M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131(10), 3611–3620 (2009)CrossRef M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131(10), 3611–3620 (2009)CrossRef
137.
go back to reference M.S. Kang, K.T. Kim, J.U. Lee, W.H. Jo, Direct exfoliation of graphite using a non-ionic polymer surfactant for fabrication of transparent and conductive graphene films. J. Mater. Chem. C 1(9), 1870 (2013)CrossRef M.S. Kang, K.T. Kim, J.U. Lee, W.H. Jo, Direct exfoliation of graphite using a non-ionic polymer surfactant for fabrication of transparent and conductive graphene films. J. Mater. Chem. C 1(9), 1870 (2013)CrossRef
138.
go back to reference A.A. Green, M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9(12), 4031–4036 (2009)CrossRef A.A. Green, M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9(12), 4031–4036 (2009)CrossRef
139.
go back to reference M.S. Arnold, S.I. Stupp, M.C. Hersam, Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5(4), 713–718 (2005)CrossRef M.S. Arnold, S.I. Stupp, M.C. Hersam, Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5(4), 713–718 (2005)CrossRef
140.
go back to reference G. Hu, T. Albrow-Owen, X. Jin, A. Ali, G. Hu, C.T. Richard, Z. Yang, X. Zhu, R. Woodward, T.-C. Wu, H. Jussila, P. Tan, Z. Sun, E. Kelleher, Y. Xu, M. Zhang, Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8, 278 (2017)CrossRef G. Hu, T. Albrow-Owen, X. Jin, A. Ali, G. Hu, C.T. Richard, Z. Yang, X. Zhu, R. Woodward, T.-C. Wu, H. Jussila, P. Tan, Z. Sun, E. Kelleher, Y. Xu, M. Zhang, Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8, 278 (2017)CrossRef
141.
go back to reference U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, J.N. Coleman, Solvent-exfoliated graphene at extremely high concentration. Langmuir 27(15), 9077–9082 (2011)CrossRef U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, J.N. Coleman, Solvent-exfoliated graphene at extremely high concentration. Langmuir 27(15), 9077–9082 (2011)CrossRef
142.
go back to reference J.N. Coleman, Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 46(1), 14–22 (2013)CrossRef J.N. Coleman, Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 46(1), 14–22 (2013)CrossRef
143.
go back to reference A. Ciesielski, P. Samor, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43(1), 381–398 (2014)CrossRef A. Ciesielski, P. Samor, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43(1), 381–398 (2014)CrossRef
144.
go back to reference J.N. Coleman, Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19(23), 3680–3695 (2009)CrossRef J.N. Coleman, Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19(23), 3680–3695 (2009)CrossRef
145.
go back to reference R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A.E. Sichirollo, Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. Appl. Opt. 28(12), 2318 (1989)CrossRef R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A.E. Sichirollo, Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. Appl. Opt. 28(12), 2318 (1989)CrossRef
146.
go back to reference L. Yang, Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, 2nd edn. (Wiley, Hoboken, 2009) L. Yang, Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, 2nd edn. (Wiley, Hoboken, 2009)
147.
go back to reference C. Backes, R.J. Smith, N. McEvoy, N.C. Berner, D. McCloskey, H.C. Nerl, A. O’Neill, P.J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G.S. Duesberg, J.F. Donegan, V. Nicolosi, J.N. Coleman, Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nat. Commun. 5, 4576 (2014)CrossRef C. Backes, R.J. Smith, N. McEvoy, N.C. Berner, D. McCloskey, H.C. Nerl, A. O’Neill, P.J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G.S. Duesberg, J.F. Donegan, V. Nicolosi, J.N. Coleman, Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nat. Commun. 5, 4576 (2014)CrossRef
148.
go back to reference K.S. Aneja, S. Bohm, A.S. Khanna, H.L. Mallika Bohm, Graphene based anticorrosive coatings for Cr(VI) replacement. Nanoscale 7(42), 17879–17888 (2015)CrossRef K.S. Aneja, S. Bohm, A.S. Khanna, H.L. Mallika Bohm, Graphene based anticorrosive coatings for Cr(VI) replacement. Nanoscale 7(42), 17879–17888 (2015)CrossRef
149.
go back to reference R. Erni, M.D. Rossell, C. Kisielowski, Ulrich Dahmen, Atomic-resolution imaging with a Sub-50-pm electron probe. Phys. Rev. Lett. 102(9), 096101 (2009) R. Erni, M.D. Rossell, C. Kisielowski, Ulrich Dahmen, Atomic-resolution imaging with a Sub-50-pm electron probe. Phys. Rev. Lett. 102(9), 096101 (2009)
150.
go back to reference N. Wang, Q. Xu, S. Xu, Y. Qi, M. Chen, H. Li, High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/Surfactant/H2O system. Sci. Rep. 5, 16764 (2015)CrossRef N. Wang, Q. Xu, S. Xu, Y. Qi, M. Chen, H. Li, High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/Surfactant/H2O system. Sci. Rep. 5, 16764 (2015)CrossRef
151.
go back to reference F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)***CrossRef F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)***CrossRef
152.
go back to reference J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143(1–2), 101–109 (2007)CrossRef J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143(1–2), 101–109 (2007)CrossRef
153.
go back to reference J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007)CrossRef J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007)CrossRef
154.
go back to reference A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006) A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)
155.
go back to reference S. Zhang, J. Yang, R. Xu, F. Wang, W. Li, M. Ghufran, Y.-W. Zhang, Z. Yu, G. Zhang, Q. Qin, Y. Lu, Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8(9), 9590–9596 (2014)CrossRef S. Zhang, J. Yang, R. Xu, F. Wang, W. Li, M. Ghufran, Y.-W. Zhang, Z. Yu, G. Zhang, Q. Qin, Y. Lu, Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8(9), 9590–9596 (2014)CrossRef
156.
go back to reference H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012)CrossRef H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012)CrossRef
157.
go back to reference C. Backes, K.R. Paton, D. Hanlon, S. Yuan, M.I. Katsnelson, J. Houston, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale 8(7), 4311–4323 (2016)CrossRef C. Backes, K.R. Paton, D. Hanlon, S. Yuan, M.I. Katsnelson, J. Houston, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale 8(7), 4311–4323 (2016)CrossRef
158.
go back to reference A.C Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8(4), 235–246 (2013)CrossRef A.C Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8(4), 235–246 (2013)CrossRef
159.
go back to reference K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2008)CrossRef K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2008)CrossRef
160.
go back to reference X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, P.-H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44(9), 2757–2785 (2015)CrossRef X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, P.-H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44(9), 2757–2785 (2015)CrossRef
161.
go back to reference C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010)CrossRef C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010)CrossRef
162.
go back to reference Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X.-F. Yu, P.K. Chu, From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25(45), 6996–7002 (2015)CrossRef Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X.-F. Yu, P.K. Chu, From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25(45), 6996–7002 (2015)CrossRef
163.
go back to reference L.G. Cançado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11(8), 3190–3196 (2011)CrossRef L.G. Cançado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11(8), 3190–3196 (2011)CrossRef
164.
go back to reference A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1–2), 47–57 (2007)CrossRef A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1–2), 47–57 (2007)CrossRef
165.
go back to reference B. Chakraborty, A. Bera, D.V.S. Muthu, S. Bhowmick, U.V. Waghmare, A.K. Sood, Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B: Condens. Matter Mater. Phys. 85(16), 161403(r) (2012) B. Chakraborty, A. Bera, D.V.S. Muthu, S. Bhowmick, U.V. Waghmare, A.K. Sood, Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B: Condens. Matter Mater. Phys. 85(16), 161403(r) (2012)
166.
go back to reference Y. Liu, Z. Liu, W.S. Lew, Q.J. Wang, Temperature dependence of the electrical transport properties in few-layer graphene interconnects. Nanoscale Res. Lett. 8(1), 335 (2013)CrossRef Y. Liu, Z. Liu, W.S. Lew, Q.J. Wang, Temperature dependence of the electrical transport properties in few-layer graphene interconnects. Nanoscale Res. Lett. 8(1), 335 (2013)CrossRef
167.
go back to reference D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7(2), 238–242 (2007)CrossRef D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7(2), 238–242 (2007)CrossRef
168.
go back to reference A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006) A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)
169.
go back to reference X.-L. Li, W.-P. Han, J.-B. Wu, X.-F. Qiao, J. Zhang, P.-H. Tan, Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater. 27(19), 1604468 (2017)CrossRef X.-L. Li, W.-P. Han, J.-B. Wu, X.-F. Qiao, J. Zhang, P.-H. Tan, Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater. 27(19), 1604468 (2017)CrossRef
170.
go back to reference F. Torrisi, T. Hasan, W.P. Wu, Z.P. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S.J. Jung, F. Bonaccorso, P.J. Paul, D.P. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRef F. Torrisi, T. Hasan, W.P. Wu, Z.P. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S.J. Jung, F. Bonaccorso, P.J. Paul, D.P. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRef
171.
go back to reference C. Casiraghi, Raman spectroscopy of graphene edges. Nano Lett. 9(4), 1433–1441 (2009)CrossRef C. Casiraghi, Raman spectroscopy of graphene edges. Nano Lett. 9(4), 1433–1441 (2009)CrossRef
172.
go back to reference U. Khan, A. O’Neill, H. Porwal, P. May, K. Nawaz, J.N. Coleman, Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon 50(2), 470–475 (2012)CrossRef U. Khan, A. O’Neill, H. Porwal, P. May, K. Nawaz, J.N. Coleman, Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon 50(2), 470–475 (2012)CrossRef
173.
go back to reference W. Zhao, Z. Ghorannevis, K.K. Amara, J.R. Pang, Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale 5(20), 9677–9683 (2013)CrossRef W. Zhao, Z. Ghorannevis, K.K. Amara, J.R. Pang, Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale 5(20), 9677–9683 (2013)CrossRef
174.
go back to reference X. Zhang, W.P. Han, J.B. Wu, S. Milana, Y. Lu, Q.Q. Li, A.C. Ferrari, P.H. Tan, Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B: Condens. Matter Mater. Phys. 87(11), 115413 (2013) X. Zhang, W.P. Han, J.B. Wu, S. Milana, Y. Lu, Q.Q. Li, A.C. Ferrari, P.H. Tan, Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B: Condens. Matter Mater. Phys. 87(11), 115413 (2013)
175.
go back to reference M. Zhang, R.C.T. Howe, R.I. Woodward, E.J.R. Kelleher, F. Torrisi, G. Hu, S.V. Popov, J.R. Taylor, T. Hasan, Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Res. 8(5), 1522–1534 (2015)CrossRef M. Zhang, R.C.T. Howe, R.I. Woodward, E.J.R. Kelleher, F. Torrisi, G. Hu, S.V. Popov, J.R. Taylor, T. Hasan, Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Res. 8(5), 1522–1534 (2015)CrossRef
176.
go back to reference L. Liang, V. Meunier, First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 6(10), 5394–5401 (2014)CrossRef L. Liang, V. Meunier, First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 6(10), 5394–5401 (2014)CrossRef
177.
go back to reference D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, Z. Sun, Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation. Sci. Rep. 5, 15899 (2015)CrossRef D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, Z. Sun, Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation. Sci. Rep. 5, 15899 (2015)CrossRef
178.
go back to reference A. Castellanos-Gomez, L. Vicarelli, E. Prada, J.O. Island, K.L. Narasimha-Acharya, S.I. Blanter, D.J. Groenendijk, M. Buscema, G.A. Steele, J.V. Alvarez, H.W. Zandbergen, J.J. Palacios, H.S.J. van der Zant, Isolation and characterization of few-layer black phosphorus. 2D Mater. 1(2), 025001 (2014)CrossRef A. Castellanos-Gomez, L. Vicarelli, E. Prada, J.O. Island, K.L. Narasimha-Acharya, S.I. Blanter, D.J. Groenendijk, M. Buscema, G.A. Steele, J.V. Alvarez, H.W. Zandbergen, J.J. Palacios, H.S.J. van der Zant, Isolation and characterization of few-layer black phosphorus. 2D Mater. 1(2), 025001 (2014)CrossRef
179.
go back to reference X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10(6), 517–521 (2015)CrossRef X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10(6), 517–521 (2015)CrossRef
180.
go back to reference H. Yang, H. Jussila, A. Autere, H.-P. Komsa, G. Ye, X. Chen, T. Hasan, Z. Sun, Optical waveplates based on birefringence of anisotropic two-dimensional layered materials. ACS Photon. 4(12), 3023–3030 (2017)CrossRef H. Yang, H. Jussila, A. Autere, H.-P. Komsa, G. Ye, X. Chen, T. Hasan, Z. Sun, Optical waveplates based on birefringence of anisotropic two-dimensional layered materials. ACS Photon. 4(12), 3023–3030 (2017)CrossRef
181.
go back to reference R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, P. Blake, Hunting for monolayer boron nitride: optical and Raman signatures. Small 7(4), 465–468 (2011)CrossRef R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, P. Blake, Hunting for monolayer boron nitride: optical and Raman signatures. Small 7(4), 465–468 (2011)CrossRef
182.
go back to reference M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, Y.J. Chabal, Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat. Mater. 9(10), 840–845 (2010)CrossRef M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, Y.J. Chabal, Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat. Mater. 9(10), 840–845 (2010)CrossRef
183.
go back to reference S. Abdolhosseinzadeh, H. Asgharzadeh, H. Seop Kim, Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 10160 (2015)CrossRef S. Abdolhosseinzadeh, H. Asgharzadeh, H. Seop Kim, Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 10160 (2015)CrossRef
184.
go back to reference S.N. Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). J. Graphene 6(1), 73348 (2017) S.N. Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). J. Graphene 6(1), 73348 (2017)
185.
go back to reference A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115(34), 17009–17019 (2011)CrossRef A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115(34), 17009–17019 (2011)CrossRef
186.
go back to reference S. Yumitori, Correlation of C1s chemical state intensities with the O1s intensity in the XPS analysis of anodically oxidized glass-like carbon samples. J. Mater. Sci. 35(1), 139–146 (2000)CrossRef S. Yumitori, Correlation of C1s chemical state intensities with the O1s intensity in the XPS analysis of anodically oxidized glass-like carbon samples. J. Mater. Sci. 35(1), 139–146 (2000)CrossRef
187.
go back to reference K.P. Dhakal, D.L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y.H. Lee, J. Kim, Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 6(21), 13028–13035 (2014)CrossRef K.P. Dhakal, D.L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y.H. Lee, J. Kim, Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 6(21), 13028–13035 (2014)CrossRef
188.
go back to reference G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22(4), 505–509 (2010)CrossRef G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22(4), 505–509 (2010)CrossRef
189.
go back to reference T. Gokus, R.R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K.S. Novoselov, A.K. Geim, A.C. Ferrari, A. Hartschuh, Making graphene luminescent by oxygen plasma treatment. ACS Nano 3(12), 3963–3968 (2009)CrossRef T. Gokus, R.R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K.S. Novoselov, A.K. Geim, A.C. Ferrari, A. Hartschuh, Making graphene luminescent by oxygen plasma treatment. ACS Nano 3(12), 3963–3968 (2009)CrossRef
190.
go back to reference C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2004)MATH C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2004)MATH
191.
go back to reference F.T. Johra, J.W. Lee, W.G. Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20(5), 2883–2887 (2014)CrossRef F.T. Johra, J.W. Lee, W.G. Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20(5), 2883–2887 (2014)CrossRef
Metadata
Title
2D Material Production Methods
Authors
Leonard W. T. Ng
Guohua Hu
Richard C. T. Howe
Xiaoxi Zhu
Zongyin Yang
Christopher G. Jones
Tawfique Hasan
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-91572-2_3