Skip to main content
Top

2017 | OriginalPaper | Chapter

4. 3-D Nanostructure Fabrication by Focused-Ion Beam, Electron- and Laser Beam

Authors : Shinji Matsui, Hiroaki Misawa, Quan Sun

Published in: Springer Handbook of Nanotechnology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, we describe three-dimensional (3-D) nanostructure fabrication techniques using focused-ion-beam (FIB)-induced chemical vapor deposition (CVD), electron-beam (EB)-induced CVD, and femtosecond laser (fs-laser) techniques. We first describe 30 keV Ga+ FIB-induced CVD using a phenanthrene (C14H10) source gas as the precursor. A diamond-like amorphous carbon film is deposited during this process; it has a Young's modulus exceeding 600 GPa, making it potentially highly desirable for various applications. A three-dimensional pattern generator system has been developed to make arbitrary three-dimensional nanostructures. We also discuss microstructure plastic art, which is a new field that has been made possible by microbeam technology, and we present examples of such art, including a micro wine glass with an external diameter of 2.75 μm and a height of 12 μm. We then discuss free-space nanowiring and show by using a mixture of C14H10 and W ( CO)6 that the electrical properties indicate an increase in metal content results in a lower resistivity. We also demonstrate that a Morpho butterfly scale quasistructure fabricated by FIB-induced CVD has almost the same optical characteristics as a real Morpho butterfly scale. We then discuss three-dimensional nanostructure fabrication using EB-induced CVD. Because of the nanometer resolution, EB-induced CVD is now indispensable for mask repair techniques for the 193 nm node. According to real-time observations by transmission electron microscopy, the W clusters, as the initial growth stage, are formed first followed by the W layer which forms as W clusters coalesce due to EB irradiation. We go on to discuss photonic crystals and Smith–Purcell electron optics as examples of three-dimensional nanostructure applications using EB-induced CVD. Finally, we describe femtosecond-laser-assisted micro/nano fabrication which has been recognized as a promising technique to fabricate three-dimensional structures inside transparent materials. The spatial resolution can reach submicrometer levels and even tens of nanometers owing to suppression of the involved heat diffusion and nonlinear adsorption. We discuss three-dimensional femtosecond laser nanofabrication using the direct laser writing technique and multiple beam interference lithography and describe the fabrication of photonic crystals in a photoresist.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
4.1
go back to reference S. Matsui: Nanostructure fabrication using electron beam and its application to nanometer devices, Proc. IEEE 85, 629–642 (1997)CrossRef S. Matsui: Nanostructure fabrication using electron beam and its application to nanometer devices, Proc. IEEE 85, 629–642 (1997)CrossRef
4.2
go back to reference A. Wargner, J.P. Levin, J.L. Mauer, P.G. Blauner, S.J. Kirch, P. Long: X-ray mask repair with focused ion beams, J. Vac. Sci. Technol. B 8, 1557–1564 (1990)CrossRef A. Wargner, J.P. Levin, J.L. Mauer, P.G. Blauner, S.J. Kirch, P. Long: X-ray mask repair with focused ion beams, J. Vac. Sci. Technol. B 8, 1557–1564 (1990)CrossRef
4.3
go back to reference O. Lehmann, M. Stuke: Generation of three-dimensional free-standing metal micro-objects by laser chemical processing, Appl. Phys. A 53, 343–345 (1991)CrossRef O. Lehmann, M. Stuke: Generation of three-dimensional free-standing metal micro-objects by laser chemical processing, Appl. Phys. A 53, 343–345 (1991)CrossRef
4.4
go back to reference H.W.P. Koops, J. Kretz, M. Rudolph, M. Weber, G. Dahm, K.L. Lee: Characterization and application of materials grown by electron-beam-induced deposition, Jpn. J. Appl. Phys. 33, 7099–7107 (1994)CrossRef H.W.P. Koops, J. Kretz, M. Rudolph, M. Weber, G. Dahm, K.L. Lee: Characterization and application of materials grown by electron-beam-induced deposition, Jpn. J. Appl. Phys. 33, 7099–7107 (1994)CrossRef
4.5
go back to reference S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, Y. Haruyama: Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 18, 3181–3184 (2000)CrossRef S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, Y. Haruyama: Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 18, 3181–3184 (2000)CrossRef
4.6
go back to reference H.B. Sun, S. Matsuo, H. Misawa: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Appl. Phys. Lett. 74, 786–788 (1999)CrossRef H.B. Sun, S. Matsuo, H. Misawa: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Appl. Phys. Lett. 74, 786–788 (1999)CrossRef
4.7
go back to reference K. Kand, J. Igaki, Y. Kato, R. Kometani, A. Saikubo, S. Matsui: NEXAFA study on carbon-based material formed by focused-ion-beam chemical-vapor-deposition, Radiat. Phys. Chem. 75, 1850–1854 (2006)CrossRef K. Kand, J. Igaki, Y. Kato, R. Kometani, A. Saikubo, S. Matsui: NEXAFA study on carbon-based material formed by focused-ion-beam chemical-vapor-deposition, Radiat. Phys. Chem. 75, 1850–1854 (2006)CrossRef
4.8
go back to reference J. Igaki, A. Saikubo, R. Kometani, K. Kanda, T. Suzuki, K. Niihara, S. Matsui: Elementary analysis of diamond-like carbon film formed by focused-ion-beam chemical vapor deposition, Jpn. J. Appl. Phys. 46, 8003–8004 (2007)CrossRef J. Igaki, A. Saikubo, R. Kometani, K. Kanda, T. Suzuki, K. Niihara, S. Matsui: Elementary analysis of diamond-like carbon film formed by focused-ion-beam chemical vapor deposition, Jpn. J. Appl. Phys. 46, 8003–8004 (2007)CrossRef
4.9
go back to reference T. Hoshino, K. Watanabe, R. Kometani, T. Morita, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Development of three-dimensional pattern-generating system for focused-ion-beam chemical-vapor-deposition, J. Vac. Sci. Technol. B 21, 2732–2736 (2003)CrossRef T. Hoshino, K. Watanabe, R. Kometani, T. Morita, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Development of three-dimensional pattern-generating system for focused-ion-beam chemical-vapor-deposition, J. Vac. Sci. Technol. B 21, 2732–2736 (2003)CrossRef
4.10
go back to reference R. Kometani, S. Ishihara, T. Kaito, S. Matsui: In situ observation of the three-dimensional nano-structure growth on focused-ion-beam chemical vapor deposition by scanning electron microscope, Appl. Phys. Express 1, 055001 (2008)CrossRef R. Kometani, S. Ishihara, T. Kaito, S. Matsui: In situ observation of the three-dimensional nano-structure growth on focused-ion-beam chemical vapor deposition by scanning electron microscope, Appl. Phys. Express 1, 055001 (2008)CrossRef
4.11
go back to reference E. Buks, M.L. Roukes: Stiction, adhesion energy and the Casimir effect in micromechanical systems, Phys. Rev. B 63, 033402 (2001)CrossRef E. Buks, M.L. Roukes: Stiction, adhesion energy and the Casimir effect in micromechanical systems, Phys. Rev. B 63, 033402 (2001)CrossRef
4.12
go back to reference J. Fujita, M. Ishida, T. Sakamoto, Y. Ochiai, T. Kaito, S. Matsui: Observation and characteristics of mechanical vibration in three-dimensional nanostructures and pillars grown by focused ion beam chemical vapor deposition, J. Vac. Sci. Technol. B 19, 2834–2837 (2001)CrossRef J. Fujita, M. Ishida, T. Sakamoto, Y. Ochiai, T. Kaito, S. Matsui: Observation and characteristics of mechanical vibration in three-dimensional nanostructures and pillars grown by focused ion beam chemical vapor deposition, J. Vac. Sci. Technol. B 19, 2834–2837 (2001)CrossRef
4.13
go back to reference M. Ishida, J. Fujita, Y. Ochiai: Density estimation for amorphous carbon nanopillars grown by focused ion beam assisted chemical vapor deposition, J. Vac. Sci. Technol. B 20, 2784–2787 (2002)CrossRef M. Ishida, J. Fujita, Y. Ochiai: Density estimation for amorphous carbon nanopillars grown by focused ion beam assisted chemical vapor deposition, J. Vac. Sci. Technol. B 20, 2784–2787 (2002)CrossRef
4.14
go back to reference T. Morita, K. Nakamatsu, K. Kanda, Y. Haruyama, K. Kondo, T. Hoshino, T. Kaito, J. Fujita, T. Ichihashi, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui: Nanomechanical switch fabrication by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 22, 3137–3142 (2004)CrossRef T. Morita, K. Nakamatsu, K. Kanda, Y. Haruyama, K. Kondo, T. Hoshino, T. Kaito, J. Fujita, T. Ichihashi, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui: Nanomechanical switch fabrication by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 22, 3137–3142 (2004)CrossRef
4.15
go back to reference R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Characteristic of nano-electrostatic actuator fabricated by focused ion beam chemical vapor deposition, Jpn. J. Appl. Phys. 43, 7187–7191 (2004)CrossRef R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Characteristic of nano-electrostatic actuator fabricated by focused ion beam chemical vapor deposition, Jpn. J. Appl. Phys. 43, 7187–7191 (2004)CrossRef
4.16
go back to reference R. Kometani, T. Morita, K. Watanabe, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Nozzle-nanostructure fabrication on glass capillary by focused-ion-beam chemical vapor deposition and etching, Jpn. J. Appl. Phys. 42, 4107–4110 (2003)CrossRef R. Kometani, T. Morita, K. Watanabe, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Nozzle-nanostructure fabrication on glass capillary by focused-ion-beam chemical vapor deposition and etching, Jpn. J. Appl. Phys. 42, 4107–4110 (2003)CrossRef
4.17
go back to reference R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Performance of nanomanipulator fabricated on glass capillary by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 23, 298–301 (2005)CrossRef R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Performance of nanomanipulator fabricated on glass capillary by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 23, 298–301 (2005)CrossRef
4.18
go back to reference R. Kometani, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Three-dimensional high-performance nano-tools fabricated using focused-ion-beam chemical vapor deposition, Nucl. Instrum. Methods. Phys. Res. B 232, 362–366 (2005)CrossRef R. Kometani, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Three-dimensional high-performance nano-tools fabricated using focused-ion-beam chemical vapor deposition, Nucl. Instrum. Methods. Phys. Res. B 232, 362–366 (2005)CrossRef
4.19
go back to reference K. Nakamatsu, M. Nagase, H. Namatsu, S. Matsui: Mechanical characteristics of diamond-like-carbon nanosprings fabricated by focused-ion-beam chemical vapor deposition, Jpn. J. Appl. Phys. 44, L1228–L1230 (2005)CrossRef K. Nakamatsu, M. Nagase, H. Namatsu, S. Matsui: Mechanical characteristics of diamond-like-carbon nanosprings fabricated by focused-ion-beam chemical vapor deposition, Jpn. J. Appl. Phys. 44, L1228–L1230 (2005)CrossRef
4.20
go back to reference T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ichihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui: Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 21, 2737–2741 (2003)CrossRef T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ichihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui: Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 21, 2737–2741 (2003)CrossRef
4.21
go back to reference J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, S. Matsui: Graphitization of Fe-doped amorphous carbon pillars grown by focused ion-beam-induced chemical-vapor deposition, J. Vac. Sci. Technol. B 20, 2686–2689 (2002)CrossRef J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, S. Matsui: Graphitization of Fe-doped amorphous carbon pillars grown by focused ion-beam-induced chemical-vapor deposition, J. Vac. Sci. Technol. B 20, 2686–2689 (2002)CrossRef
4.22
go back to reference D. Guo, R. Kometani, S. Warisawa, S. Ishihara: Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 31, 061601 (2013)CrossRef D. Guo, R. Kometani, S. Warisawa, S. Ishihara: Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 31, 061601 (2013)CrossRef
4.23
go back to reference R. Kometani, S. Warisawa, S. Ishihara: The 3-D nanostructure growth evaluations by the real-time current monitoring on focused-ion-beam chemical vapor deposition, Microelectron. Eng. 87, 1044–1048 (2010)CrossRef R. Kometani, S. Warisawa, S. Ishihara: The 3-D nanostructure growth evaluations by the real-time current monitoring on focused-ion-beam chemical vapor deposition, Microelectron. Eng. 87, 1044–1048 (2010)CrossRef
4.24
go back to reference K. Nakamatsu, K. Yamamoto, T. Hirayama, S. Matsui: Fabrication of fine electron biprism filament by free-space-nanowiring technique of focused-ion-beam + chemical vapor deposition for accurate off-axis electron holography, Appl. Phys. Express 1, 117004 (2008)CrossRef K. Nakamatsu, K. Yamamoto, T. Hirayama, S. Matsui: Fabrication of fine electron biprism filament by free-space-nanowiring technique of focused-ion-beam + chemical vapor deposition for accurate off-axis electron holography, Appl. Phys. Express 1, 117004 (2008)CrossRef
4.25
go back to reference R. Kometani, K. Yusa, S. Warisawa, S. Ishihara: Piezoresistive effect in the three-dimensional diamondlike carbon nanostructure fabricated by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 28, C6F38–41 (2010)CrossRef R. Kometani, K. Yusa, S. Warisawa, S. Ishihara: Piezoresistive effect in the three-dimensional diamondlike carbon nanostructure fabricated by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 28, C6F38–41 (2010)CrossRef
4.26
go back to reference J. Dai, K. Onomitsu, R. Kometani, Y. Krockenberger, H. Yamaguchi, S. Ishihara, S. Warisawa: Superconductivity in tungsten-carbide nanowires deposited from the mixtures of W(CO)6and C14H10, Jpn. J. Appl. Phys. 52, 075001 (2013)CrossRef J. Dai, K. Onomitsu, R. Kometani, Y. Krockenberger, H. Yamaguchi, S. Ishihara, S. Warisawa: Superconductivity in tungsten-carbide nanowires deposited from the mixtures of W(CO)6and C14H10, Jpn. J. Appl. Phys. 52, 075001 (2013)CrossRef
4.27
go back to reference J. Dai, R. Kometani, K. Onomitsu, Y. Krockenberger, H. Yamaguchi, S. Ishihara, S. Warisawa: Direct fabrication of a W-C SNS Josephson junction using focused-ion-beam chemical vapor deposition, J. Micromech. Microeng. 24, 055015 (2014)CrossRef J. Dai, R. Kometani, K. Onomitsu, Y. Krockenberger, H. Yamaguchi, S. Ishihara, S. Warisawa: Direct fabrication of a W-C SNS Josephson junction using focused-ion-beam chemical vapor deposition, J. Micromech. Microeng. 24, 055015 (2014)CrossRef
4.28
go back to reference P. Vukusic, J.R. Sambles: Photonic structures in biology, Nature 424, 852–855 (2003)CrossRef P. Vukusic, J.R. Sambles: Photonic structures in biology, Nature 424, 852–855 (2003)CrossRef
4.29
go back to reference K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, S. Matsui: Brilliant blue observation from a morpho-butterfly-scale quasi-structure, Jpn. J. Appl. Phys. 44, L48–L50 (2005)CrossRef K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, S. Matsui: Brilliant blue observation from a morpho-butterfly-scale quasi-structure, Jpn. J. Appl. Phys. 44, L48–L50 (2005)CrossRef
4.30
go back to reference A.N. Broers, W.W. Molzen, J.J. Cuomo, N.D. Wittels: Electron-beam fabrication of 80-Å metal structures, Appl. Phys. Lett. 29, 596–597 (1976)CrossRef A.N. Broers, W.W. Molzen, J.J. Cuomo, N.D. Wittels: Electron-beam fabrication of 80-Å metal structures, Appl. Phys. Lett. 29, 596–597 (1976)CrossRef
4.31
go back to reference S. Matsui, K. Mori: New selective deposition technology by electron beam induced surface reaction, Jpn. J. Appl. Phys. 23, L706–L708 (1984)CrossRef S. Matsui, K. Mori: New selective deposition technology by electron beam induced surface reaction, Jpn. J. Appl. Phys. 23, L706–L708 (1984)CrossRef
4.32
go back to reference S. Matsui, K. Mori: New selective deposition technology by electron beam induced surface reaction, J. Vac. Sci. Technol. B 4, 299–304 (1986)CrossRef S. Matsui, K. Mori: New selective deposition technology by electron beam induced surface reaction, J. Vac. Sci. Technol. B 4, 299–304 (1986)CrossRef
4.33
go back to reference H.W.P. Koops, R. Weiel, D.P. Kern, T.H. Baum: High-resolution electron-beam induced deposition, J. Vac. Sci. Technol. B 6, 477–481 (1988)CrossRef H.W.P. Koops, R. Weiel, D.P. Kern, T.H. Baum: High-resolution electron-beam induced deposition, J. Vac. Sci. Technol. B 6, 477–481 (1988)CrossRef
4.34
go back to reference S. Matsui, T. Ichihashi, M. Mito: Electron beam induced selective etching and deposition technology, J. Vac. Sci. Technol. B 7, 1182–1190 (1989)CrossRef S. Matsui, T. Ichihashi, M. Mito: Electron beam induced selective etching and deposition technology, J. Vac. Sci. Technol. B 7, 1182–1190 (1989)CrossRef
4.35
go back to reference Y. Ochiai, J. Fujita, S. Matsui: Electron-beam-induced deposition of copper compound with low resistivity, J. Vac. Sci. Technol. B 14, 3887–3891 (1996)CrossRef Y. Ochiai, J. Fujita, S. Matsui: Electron-beam-induced deposition of copper compound with low resistivity, J. Vac. Sci. Technol. B 14, 3887–3891 (1996)CrossRef
4.36
go back to reference I. Utke, P. Hoffmann, B. Dwir, K. Leifer, E. Kapon, P. Doppelt: Focused electron beam induced deposition of gold, J. Vac. Sci. Technol. B 18, 3168–3171 (2000)CrossRef I. Utke, P. Hoffmann, B. Dwir, K. Leifer, E. Kapon, P. Doppelt: Focused electron beam induced deposition of gold, J. Vac. Sci. Technol. B 18, 3168–3171 (2000)CrossRef
4.37
go back to reference H.W.P. Koops, A. Reinhardt, F. Klabunde, A. Kaya, R. Plontke: Vapor supply manifold for additive nanolithography with electron beam induced deposition, Microcircuit Eng. 57/58, 909–913 (2001)CrossRef H.W.P. Koops, A. Reinhardt, F. Klabunde, A. Kaya, R. Plontke: Vapor supply manifold for additive nanolithography with electron beam induced deposition, Microcircuit Eng. 57/58, 909–913 (2001)CrossRef
4.38
go back to reference U. Hübner, R. Plontke, M. Blume, A. Reinhardt, H.W.P. Koops: On-line nanolithography using electron beam-induced deposition technique, Microelectron. Eng. 57/58, 953–958 (2001)CrossRef U. Hübner, R. Plontke, M. Blume, A. Reinhardt, H.W.P. Koops: On-line nanolithography using electron beam-induced deposition technique, Microelectron. Eng. 57/58, 953–958 (2001)CrossRef
4.39
go back to reference H.W.P. Koops, O.E. Hoinkis, M.E.W. Honsberg, R. Schmidt, R. Blum, G. Böttger, A. Kuligk, C. Liguda, M. Eich: Two-dimensional photonic crystals produced by additive nanolithography with electron beam-induced deposition act as filters in the infrared, Microelectron. Eng. 57/58, 995–1001 (2001)CrossRef H.W.P. Koops, O.E. Hoinkis, M.E.W. Honsberg, R. Schmidt, R. Blum, G. Böttger, A. Kuligk, C. Liguda, M. Eich: Two-dimensional photonic crystals produced by additive nanolithography with electron beam-induced deposition act as filters in the infrared, Microelectron. Eng. 57/58, 995–1001 (2001)CrossRef
4.40
go back to reference F. Floreani, H.W.P. Koops, W. Elsäßer: Operation of high power field emitter fabricated with electron beam deposition and concept of a miniaturized free electron laser, Microelectron. Eng. 57/58, 1009–1016 (2001)CrossRef F. Floreani, H.W.P. Koops, W. Elsäßer: Operation of high power field emitter fabricated with electron beam deposition and concept of a miniaturized free electron laser, Microelectron. Eng. 57/58, 1009–1016 (2001)CrossRef
4.41
go back to reference K. Mitsuishi, M. Shimojo, M. Han, K. Furuya: Electron-beam-induced deposition using a subnanometer-sized probe of high-energy electrons, Appl. Phys. Lett. 83, 2064–2066 (2003)CrossRef K. Mitsuishi, M. Shimojo, M. Han, K. Furuya: Electron-beam-induced deposition using a subnanometer-sized probe of high-energy electrons, Appl. Phys. Lett. 83, 2064–2066 (2003)CrossRef
4.42
go back to reference M. Shimojo, M. Takeguchi, M. Tanaka, K. Mitsuishi, K. Furuya: Electron beam-induced deposition using iron carbonyl and the effects of heat treatment on nanostructure, Appl. Phys. A 79, 1869–1872 (2004)CrossRef M. Shimojo, M. Takeguchi, M. Tanaka, K. Mitsuishi, K. Furuya: Electron beam-induced deposition using iron carbonyl and the effects of heat treatment on nanostructure, Appl. Phys. A 79, 1869–1872 (2004)CrossRef
4.43
go back to reference M. Tanaka, M. Shimojo, M. Han, K. Mitsuishi, K. Furuya: Ultimate sized nano-dots formed by electron beam-induced deposition using an ultrahigh vacuum transmission electron microscope, Surf. Interface Anal. 37, 261–264 (2005)CrossRef M. Tanaka, M. Shimojo, M. Han, K. Mitsuishi, K. Furuya: Ultimate sized nano-dots formed by electron beam-induced deposition using an ultrahigh vacuum transmission electron microscope, Surf. Interface Anal. 37, 261–264 (2005)CrossRef
4.44
go back to reference I. Utke, V. Friedli, M. Purrucker, J. Michler: Resolution in focused electron- and ion-beam induced processing, J. Vac. Sci. Technol. B 25, 2219–2223 (2007)CrossRef I. Utke, V. Friedli, M. Purrucker, J. Michler: Resolution in focused electron- and ion-beam induced processing, J. Vac. Sci. Technol. B 25, 2219–2223 (2007)CrossRef
4.45
go back to reference J.D. Barry, M. Ervin, J. Molstad, A. Wickenden, T. Brintlinger, P. Hoffman, J. Melngailis: Electron beam induced deposition of low resistivity platinum from Pt(PF3)4, J. Vac. Sci. Technol. B 24, 3165–3168 (2006)CrossRef J.D. Barry, M. Ervin, J. Molstad, A. Wickenden, T. Brintlinger, P. Hoffman, J. Melngailis: Electron beam induced deposition of low resistivity platinum from Pt(PF3)4, J. Vac. Sci. Technol. B 24, 3165–3168 (2006)CrossRef
4.46
go back to reference A. Perentes, G. Sinicco, G. Boero, B. Dwir, P. Hoffmann: Focused electron beam induced deposition of nickel, J. Vac. Sci. Technol. B 25, 2228–2232 (2007)CrossRef A. Perentes, G. Sinicco, G. Boero, B. Dwir, P. Hoffmann: Focused electron beam induced deposition of nickel, J. Vac. Sci. Technol. B 25, 2228–2232 (2007)CrossRef
4.47
go back to reference A. Botman, D.A.M. de Winter, J.J.L. Muders: Electron-beam-induced deposition of platinum at low landing energies, J. Vac. Sci. Technol. B 26, 2460–2463 (2008)CrossRef A. Botman, D.A.M. de Winter, J.J.L. Muders: Electron-beam-induced deposition of platinum at low landing energies, J. Vac. Sci. Technol. B 26, 2460–2463 (2008)CrossRef
4.48
go back to reference A. Botman, M. Hesselberth, J.J.L. Mulders: Investigation of morphological changes in platinum-containing nanostructures created by electron-beam-induced deposition, J. Vac. Sci. Technol. B 26, 2464–2467 (2008)CrossRef A. Botman, M. Hesselberth, J.J.L. Mulders: Investigation of morphological changes in platinum-containing nanostructures created by electron-beam-induced deposition, J. Vac. Sci. Technol. B 26, 2464–2467 (2008)CrossRef
4.49
go back to reference S.J. Randolph, J.D. Fowlkes, P.D. Rack: Focused, nanoscale electron-beam-induced deposition and etching, Crit. Rev. Solid State Mater. Sci. 31, 55–89 (2006)CrossRef S.J. Randolph, J.D. Fowlkes, P.D. Rack: Focused, nanoscale electron-beam-induced deposition and etching, Crit. Rev. Solid State Mater. Sci. 31, 55–89 (2006)CrossRef
4.50
go back to reference W.F. von Dorp, C.W. Hagen: A critical literature review of focused electron beam induced deposition, J. Appl. Phys. 104, 081301 (2008)CrossRef W.F. von Dorp, C.W. Hagen: A critical literature review of focused electron beam induced deposition, J. Appl. Phys. 104, 081301 (2008)CrossRef
4.51
go back to reference I. Utke, P. Hoffmann, J. Melngailis: Gas-assisted focused electron beam and ion beam processing and fabrication, J. Vac. Sci. Technol. B 26, 1197–1276 (2008)CrossRef I. Utke, P. Hoffmann, J. Melngailis: Gas-assisted focused electron beam and ion beam processing and fabrication, J. Vac. Sci. Technol. B 26, 1197–1276 (2008)CrossRef
4.52
go back to reference J. Bishop, C.J. Lobo, A. Martin, M. Ford, M. Phillips, M. Toth: Role of activated chemisorption in gas-mediated electron beam induced deposition, Phys. Rev. Lett. 109, 146103 (2012)CrossRef J. Bishop, C.J. Lobo, A. Martin, M. Ford, M. Phillips, M. Toth: Role of activated chemisorption in gas-mediated electron beam induced deposition, Phys. Rev. Lett. 109, 146103 (2012)CrossRef
4.53
go back to reference N. Silvis-Cividjian, C.W. Hagen, L.H.A. Leunissen, P. Kruit: The role of secondary electrons in electron-beam-induced deposition spacial resolution, Microelectron. Eng. 61/62, 693–699 (2002)CrossRef N. Silvis-Cividjian, C.W. Hagen, L.H.A. Leunissen, P. Kruit: The role of secondary electrons in electron-beam-induced deposition spacial resolution, Microelectron. Eng. 61/62, 693–699 (2002)CrossRef
4.54
go back to reference V. Friedli, I. Utke, K. Mølhave, J. Michler: Dose and energy dependence of mechanical properties of focused electron-beam induced pillar deposits from Cu(C5HF6O2)2, Nanotechnology 20, 385304 (2009)CrossRef V. Friedli, I. Utke, K. Mølhave, J. Michler: Dose and energy dependence of mechanical properties of focused electron-beam induced pillar deposits from Cu(C5HF6O2)2, Nanotechnology 20, 385304 (2009)CrossRef
4.55
go back to reference R. Lavrijsen, R. Córdoba, F.J. Schoenaker, T.H. Ellis, B. Barcones, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, J.M. De Teresa, C. Magen, M.R. Ibarra, P. Trompenaars, J.J.L. Mulders: Fe:O:C grown by focused-electron-beam-induced deposition: Magnetic and electric properties, Nanotechnology 22, 025302 (2011)CrossRef R. Lavrijsen, R. Córdoba, F.J. Schoenaker, T.H. Ellis, B. Barcones, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, J.M. De Teresa, C. Magen, M.R. Ibarra, P. Trompenaars, J.J.L. Mulders: Fe:O:C grown by focused-electron-beam-induced deposition: Magnetic and electric properties, Nanotechnology 22, 025302 (2011)CrossRef
4.56
go back to reference T. Brintlinger, M.S. Fuhrer, J. Melngailis, I. Utke, T. Bret, A. Perentes, P. Hoffmann, M. Abourida, P. Doppelt: Electrodes for carbon nanotube devices by focused electron beam induced deposition of gold, J. Vac. Sci. Technol. B 23, 3174–3177 (2005)CrossRef T. Brintlinger, M.S. Fuhrer, J. Melngailis, I. Utke, T. Bret, A. Perentes, P. Hoffmann, M. Abourida, P. Doppelt: Electrodes for carbon nanotube devices by focused electron beam induced deposition of gold, J. Vac. Sci. Technol. B 23, 3174–3177 (2005)CrossRef
4.57
go back to reference S. Graells, R. Alcubilla, G. Badenes, R. Quidant: Growth of plasmonic gold nanostructures by electron beam induced deposition, Appl. Phys. Lett. 91, 121112 (2007)CrossRef S. Graells, R. Alcubilla, G. Badenes, R. Quidant: Growth of plasmonic gold nanostructures by electron beam induced deposition, Appl. Phys. Lett. 91, 121112 (2007)CrossRef
4.58
go back to reference A. Fernández-Pacheco, J.M. de Teresa, R. Cordoba, M.R. Ibarra, D. Petit, D.E. Read, L. O’Brien, E.R. Lewis, H.T. Zeng, R.P. Cowburn: Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition, Appl. Phys. Lett. 94, 192509 (2009)CrossRef A. Fernández-Pacheco, J.M. de Teresa, R. Cordoba, M.R. Ibarra, D. Petit, D.E. Read, L. O’Brien, E.R. Lewis, H.T. Zeng, R.P. Cowburn: Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition, Appl. Phys. Lett. 94, 192509 (2009)CrossRef
4.59
go back to reference J. Pablo-Navarro, C. Magén, J.M. de Teresa: Three-dimensional core-shell ferromagnetic nanowires grown by focused electron beam induced deposition, Nanotechnology 27, 285302 (2016)CrossRef J. Pablo-Navarro, C. Magén, J.M. de Teresa: Three-dimensional core-shell ferromagnetic nanowires grown by focused electron beam induced deposition, Nanotechnology 27, 285302 (2016)CrossRef
4.60
go back to reference H. Acar, T. Coenen, A. Polman, L.K. Kuipers: Dispersive ground plane core-shell type optical monopole antennas fabricated with electron beam induced deposition, ACS Nano 6, 8226–8232 (2012)CrossRef H. Acar, T. Coenen, A. Polman, L.K. Kuipers: Dispersive ground plane core-shell type optical monopole antennas fabricated with electron beam induced deposition, ACS Nano 6, 8226–8232 (2012)CrossRef
4.61
go back to reference P. Woźniak, K. Höflich, G. Brönstrup, P. Banzer, S. Christiansen, G. Leuchs: Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition, Nanotechnology 27, 025705 (2016)CrossRef P. Woźniak, K. Höflich, G. Brönstrup, P. Banzer, S. Christiansen, G. Leuchs: Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition, Nanotechnology 27, 025705 (2016)CrossRef
4.62
go back to reference I. Utke, S. Moshkalev, P. Russel (Eds.): Nanofabrication Using Focused Ion and Electron-Beams (Oxford Univ. Press, Oxford 2012) I. Utke, S. Moshkalev, P. Russel (Eds.): Nanofabrication Using Focused Ion and Electron-Beams (Oxford Univ. Press, Oxford 2012)
4.63
go back to reference S. Matsui, K. Mori: In situ observation on electron beam induced chemical vapor deposition by Auger electron spectroscopy, Appl. Phys. Lett. 51, 646–648 (1987)CrossRef S. Matsui, K. Mori: In situ observation on electron beam induced chemical vapor deposition by Auger electron spectroscopy, Appl. Phys. Lett. 51, 646–648 (1987)CrossRef
4.64
go back to reference S. Matsui, T. Ichihashi: In situ observation on electron-beam-induced chemical vapor deposition by transmission electron microscopy, Appl. Phys. Lett. 53, 842–844 (1988)CrossRef S. Matsui, T. Ichihashi: In situ observation on electron-beam-induced chemical vapor deposition by transmission electron microscopy, Appl. Phys. Lett. 53, 842–844 (1988)CrossRef
4.65
go back to reference V. Tasco, M. Esposito, F. Todisco, A. Benedetti, M. Cuscunà, D. Sanvitto, A. Passaseo: Three-dimensional nanohelices for chiral photonics, Appl. Phys. A 122, 280 (2016)CrossRef V. Tasco, M. Esposito, F. Todisco, A. Benedetti, M. Cuscunà, D. Sanvitto, A. Passaseo: Three-dimensional nanohelices for chiral photonics, Appl. Phys. A 122, 280 (2016)CrossRef
4.66
go back to reference S. Juodkazis, V. Mizeikis, H. Misawa: Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications, J Appl. Phys. 106, 051101 (2009)CrossRef S. Juodkazis, V. Mizeikis, H. Misawa: Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications, J Appl. Phys. 106, 051101 (2009)CrossRef
4.67
go back to reference K. Sugioka, Y. Cheng: Ultrafast lasers-reliable tools for advanced materials processing, Light Sci. Appl. 3, e149 (2014)CrossRef K. Sugioka, Y. Cheng: Ultrafast lasers-reliable tools for advanced materials processing, Light Sci. Appl. 3, e149 (2014)CrossRef
4.68
go back to reference J.F. Herbstman, A.J. Hunt: High-aspect ratio nanochannel formation by single femtosecond laser pulses, Opt. Express 18, 16840–16848 (2010)CrossRef J.F. Herbstman, A.J. Hunt: High-aspect ratio nanochannel formation by single femtosecond laser pulses, Opt. Express 18, 16840–16848 (2010)CrossRef
4.69
go back to reference E. Brasselet, M. Malinauskas, A. Zukauskas, S. Juodkazis: Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum, Appl. Phys. Lett. 97, 211108 (2010)CrossRef E. Brasselet, M. Malinauskas, A. Zukauskas, S. Juodkazis: Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum, Appl. Phys. Lett. 97, 211108 (2010)CrossRef
4.70
go back to reference S. Maruo, K. Ikuta, H. Korogi: Submicron manipulation tools driven by light in a liquid, Appl. Phys. Lett. 82, 133 (2003)CrossRef S. Maruo, K. Ikuta, H. Korogi: Submicron manipulation tools driven by light in a liquid, Appl. Phys. Lett. 82, 133 (2003)CrossRef
4.71
go back to reference Y.Y. Cao, N. Takeyasu, T. Tanaka, X.M. Duan, S. Kawata: 3-D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction, Small 5, 1144–1148 (2009) Y.Y. Cao, N. Takeyasu, T. Tanaka, X.M. Duan, S. Kawata: 3-D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction, Small 5, 1144–1148 (2009)
4.72
go back to reference Y.J. Yan, M.I. Rashad, E.J. Teo, H. Tanoto, J.H. Teng, A.A. Bettiol: Selective electroless silver plating of three dimensional SU-8 microstructures on silicon for metamaterials applications, Opt. Mater. Express 1, 1548–1554 (2011)CrossRef Y.J. Yan, M.I. Rashad, E.J. Teo, H. Tanoto, J.H. Teng, A.A. Bettiol: Selective electroless silver plating of three dimensional SU-8 microstructures on silicon for metamaterials applications, Opt. Mater. Express 1, 1548–1554 (2011)CrossRef
4.73
go back to reference D.X. Liu, Y.L. Sun, W.F. Dong, R.Z. Yang, Q.D. Chen, H.B. Sun: Dynamic laser prototyping for biomimetic nanofabrication, Laser Photonics Rev. 8, 882–888 (2014)CrossRef D.X. Liu, Y.L. Sun, W.F. Dong, R.Z. Yang, Q.D. Chen, H.B. Sun: Dynamic laser prototyping for biomimetic nanofabrication, Laser Photonics Rev. 8, 882–888 (2014)CrossRef
4.74
go back to reference T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener: Three-dimensional invisibility cloak at optical wavelengths, Science 328, 337–339 (2010)CrossRef T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener: Three-dimensional invisibility cloak at optical wavelengths, Science 328, 337–339 (2010)CrossRef
4.75
go back to reference H.B. Sun, S. Matsuo, H. Misawa: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Appl. Phys. Lett. 74, 786–788 (1999)CrossRef H.B. Sun, S. Matsuo, H. Misawa: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Appl. Phys. Lett. 74, 786–788 (1999)CrossRef
4.76
go back to reference B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D. McCord-Maughon, J.Q. Qin, H. Rockel, M. Rumi, X.L. Wu, S.R. Marder, J.W. Perry: Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature 398, 51–54 (1999)CrossRef B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D. McCord-Maughon, J.Q. Qin, H. Rockel, M. Rumi, X.L. Wu, S.R. Marder, J.W. Perry: Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature 398, 51–54 (1999)CrossRef
4.77
go back to reference K.K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, H. Misawa: Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing, Adv. Mater. 17, 541–545 (2005)CrossRef K.K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, H. Misawa: Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing, Adv. Mater. 17, 541–545 (2005)CrossRef
4.78
go back to reference K.K. Seet, V. Mizeikis, S. Juodkazis, H. Misawa: Spiral three-dimensional photonic crystals for telecommunications spectral range, Appl. Phys. A 82, 683–688 (2006)CrossRef K.K. Seet, V. Mizeikis, S. Juodkazis, H. Misawa: Spiral three-dimensional photonic crystals for telecommunications spectral range, Appl. Phys. A 82, 683–688 (2006)CrossRef
4.79
go back to reference A. Ovsianikov, S.Z. Xiao, M. Farsari, M. Vamvakaki, C. Fotakis, B.N. Chichkov: Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials, Opt. Express 17, 2143–2148 (2009)CrossRef A. Ovsianikov, S.Z. Xiao, M. Farsari, M. Vamvakaki, C. Fotakis, B.N. Chichkov: Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials, Opt. Express 17, 2143–2148 (2009)CrossRef
4.80
go back to reference S.R. Kennedy, M.J. Brett, O. Toader, S. John: Fabrication of tetragonal square spiral photonic crystals, Nano Lett. 2, 59–62 (2002)CrossRef S.R. Kennedy, M.J. Brett, O. Toader, S. John: Fabrication of tetragonal square spiral photonic crystals, Nano Lett. 2, 59–62 (2002)CrossRef
4.81
go back to reference Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, H. Misawa: Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses, J. Micromech. Microeng. 20, 035004 (2010)CrossRef Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, H. Misawa: Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses, J. Micromech. Microeng. 20, 035004 (2010)CrossRef
4.82
go back to reference K.K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, S. John: Templating and replication of spiral photonic crystals for silicon photonics, IEEE J. Sel. Top. Quant. 14, 1064–1073 (2008)CrossRef K.K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, S. John: Templating and replication of spiral photonic crystals for silicon photonics, IEEE J. Sel. Top. Quant. 14, 1064–1073 (2008)CrossRef
4.83
go back to reference Q. Sun, K. Ueno, H. Misawa: In situ investigation of the shrinkage of photopolymerized micro–nanostructures: The effect of the drying process, Opt. Lett. 37, 710–712 (2012)CrossRef Q. Sun, K. Ueno, H. Misawa: In situ investigation of the shrinkage of photopolymerized micro–nanostructures: The effect of the drying process, Opt. Lett. 37, 710–712 (2012)CrossRef
4.84
go back to reference V. Mizeikis, S. Juodkazis, R. Tarozaite, J. Juodkazyte, K. Juodkazis, H. Misawa: Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region, Opt. Express 15, 8454–8464 (2007)CrossRef V. Mizeikis, S. Juodkazis, R. Tarozaite, J. Juodkazyte, K. Juodkazis, H. Misawa: Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region, Opt. Express 15, 8454–8464 (2007)CrossRef
Metadata
Title
3-D Nanostructure Fabrication by Focused-Ion Beam, Electron- and Laser Beam
Authors
Shinji Matsui
Hiroaki Misawa
Quan Sun
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-54357-3_4