Skip to main content
Top
Published in: Journal of Coatings Technology and Research 4/2016

22-01-2016

3D laser scanning confocal microscopy of siloxane-based comb and double-comb polymers in PVDF-HFP thin films

Authors: Eva Cznotka, Steffen Jeschke, Sebastian Schmohl, Patrik Johansson, Hans-Dieter Wiemhöfer

Published in: Journal of Coatings Technology and Research | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Currently, atomic force microscopy is the preferred technique to determine roughness on membrane surfaces. In this paper, a new method to measure surface roughness is presented using a 3D laser scanning confocal microscope for high-resolution topographic analysis and is compared to conventional SEM. For this study, the surfaces of eight samples based on a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) host polymer with different liquid interpenetrating components were analyzed. Polymethylhydrosiloxane, triethylene glycolallylmethylether, (3,3,3-trifluoropropyl)methylcyclotrisiloxane (D3-C2H4CF3), polysiloxane-comb-propyloxymethoxytriglycol (PSx), polysiloxane-comb-propyl-3,3,3-trifluoro (PSx-C2H4CF3), poly[bis(2-(2-methoxyethoxy) ethoxy) phosphazene, or poly[bis(trifluoro)ethoxy] phosphazene was chosen as interpenetrating compound to investigate the impact of comb and double-comb-structured polymer backbones, as well as their dipolar or fluorous residues on the PVDF-HFP-miscibility. Different phases of the constituting ingredients were identified via their thermal properties determined by DSC. Additionally, the COSMO-RS method supported the experimental results, and with regard to computed σ-profiles, new modified structures for polysiloxane and polyphosphazene synthesis were suggested.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Souquet, JL, Duclot, M, “Thin Film Lithium Batteries.” Solid State Ion, 148 375–379 (2002)CrossRef Souquet, JL, Duclot, M, “Thin Film Lithium Batteries.” Solid State Ion, 148 375–379 (2002)CrossRef
3.
go back to reference Xia, H, Wang, HL, Xiao, W, Lai, MO, Lu, L, “Thin Film Li Electrolytes for All-Solid-State Micro-batteries.” Int. J. Surf. Sci. Eng., 3 23 (2009)CrossRef Xia, H, Wang, HL, Xiao, W, Lai, MO, Lu, L, “Thin Film Li Electrolytes for All-Solid-State Micro-batteries.” Int. J. Surf. Sci. Eng., 3 23 (2009)CrossRef
4.
go back to reference Bates, JB, Dudney, NJ, Neudecker, B, Ueda, A, Evans, CD, “Thin-Film Lithium and Lithium-Ion Batteries.” Solid State Ion., 135 33–45 (2000)CrossRef Bates, JB, Dudney, NJ, Neudecker, B, Ueda, A, Evans, CD, “Thin-Film Lithium and Lithium-Ion Batteries.” Solid State Ion., 135 33–45 (2000)CrossRef
5.
go back to reference Gaikwad, AM, Arias, AC, Steingart, DA, “Recent Progress on Printed Flexible Batteries: Mechanical Challenges, Printing Technologies, and Future Prospects.” Energy Technol., 3 305–328 (2015)CrossRef Gaikwad, AM, Arias, AC, Steingart, DA, “Recent Progress on Printed Flexible Batteries: Mechanical Challenges, Printing Technologies, and Future Prospects.” Energy Technol., 3 305–328 (2015)CrossRef
6.
go back to reference Oudenhoven, JFM, Baggetto, L, Notten, PHL, “All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts.” Adv. Energy Mater., 1 10–33 (2011)CrossRef Oudenhoven, JFM, Baggetto, L, Notten, PHL, “All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts.” Adv. Energy Mater., 1 10–33 (2011)CrossRef
7.
go back to reference Patil, A, et al., “Issue and Challenges Facing Rechargeable Thin Film Lithium Batteries.” Mater. Res. Bull., 43 1913–1942 (2008)CrossRef Patil, A, et al., “Issue and Challenges Facing Rechargeable Thin Film Lithium Batteries.” Mater. Res. Bull., 43 1913–1942 (2008)CrossRef
8.
go back to reference Seidel, SM, Jeschke, S, Vettikuzha, P, Wiemhöfer, H-D, “PVDF-HFP/Ether-Modified Polysiloxane Membranes Obtained via Airbrush Spraying as Active Separators for Application in Lithium Ion Batteries.” Chem. Commun., 51 12048–12051 (2015)CrossRef Seidel, SM, Jeschke, S, Vettikuzha, P, Wiemhöfer, H-D, “PVDF-HFP/Ether-Modified Polysiloxane Membranes Obtained via Airbrush Spraying as Active Separators for Application in Lithium Ion Batteries.” Chem. Commun., 51 12048–12051 (2015)CrossRef
9.
go back to reference Gowda, SR, et al., “Conformal Coating of Thin Polymer Electrolyte Layer on Nanostructured Electrode Materials for Three-Dimensional Battery Applications.” Nano Lett., 11 101–106 (2011)CrossRef Gowda, SR, et al., “Conformal Coating of Thin Polymer Electrolyte Layer on Nanostructured Electrode Materials for Three-Dimensional Battery Applications.” Nano Lett., 11 101–106 (2011)CrossRef
10.
go back to reference Lee, H, Lee, DJ, Kim, Y-J, Park, J-K, Kim, H-T, “A Simple Composite Protective Layer Coating that Enhances the Cycling Stability of Lithium Metal Batteries.” J. Power Sources, 284 103–108 (2015)CrossRef Lee, H, Lee, DJ, Kim, Y-J, Park, J-K, Kim, H-T, “A Simple Composite Protective Layer Coating that Enhances the Cycling Stability of Lithium Metal Batteries.” J. Power Sources, 284 103–108 (2015)CrossRef
11.
go back to reference Sham, AYW, Notley, SM, “Graphene–Polyelectrolyte Multilayer Film Formation Driven by Hydrogen Bonding.” J. Colloid Interface Sci., 456 32–41 (2015)CrossRef Sham, AYW, Notley, SM, “Graphene–Polyelectrolyte Multilayer Film Formation Driven by Hydrogen Bonding.” J. Colloid Interface Sci., 456 32–41 (2015)CrossRef
12.
go back to reference Jung, Y-C, Lee, S-M, Choi, J-H, Jang, SS, Kim, D-W, “All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes.” J. Electrochem. Soc., 162 A704–A710 (2015)CrossRef Jung, Y-C, Lee, S-M, Choi, J-H, Jang, SS, Kim, D-W, “All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes.” J. Electrochem. Soc., 162 A704–A710 (2015)CrossRef
13.
go back to reference Zhang, H, et al., “Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte.” Electrochim. Acta, 133 529–538 (2014)CrossRef Zhang, H, et al., “Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte.” Electrochim. Acta, 133 529–538 (2014)CrossRef
14.
go back to reference Chun-Guey, W, Chiung-Hui, W, Ming-I, L, Huey-Jan, C, “New Solid Polymer Electrolytes Based on PEO/PAN Hybrids.” J. Appl. Polym. Sci., 99 1530–1540 (2006)CrossRef Chun-Guey, W, Chiung-Hui, W, Ming-I, L, Huey-Jan, C, “New Solid Polymer Electrolytes Based on PEO/PAN Hybrids.” J. Appl. Polym. Sci., 99 1530–1540 (2006)CrossRef
15.
go back to reference Kesavan, K, Rajendran, S, Mathew, CM, “Studies on Poly(vinyl pyrrolidone) Based Solid Polymer Blend Electrolytes Complexed with Various Lithium Salts.” Polym. Sci. Ser. B, 56 520–529 (2014)CrossRef Kesavan, K, Rajendran, S, Mathew, CM, “Studies on Poly(vinyl pyrrolidone) Based Solid Polymer Blend Electrolytes Complexed with Various Lithium Salts.” Polym. Sci. Ser. B, 56 520–529 (2014)CrossRef
16.
go back to reference Cznotka, E, Jeschke, S, Vettikuzha, P, Wiemhöfer, H-D, “Semi-interpenetrating Polymer Network of Poly(methyl methacrylate) and Ether-Modified Polysiloxane.” Solid State Ion., 274 55–63 (2015)CrossRef Cznotka, E, Jeschke, S, Vettikuzha, P, Wiemhöfer, H-D, “Semi-interpenetrating Polymer Network of Poly(methyl methacrylate) and Ether-Modified Polysiloxane.” Solid State Ion., 274 55–63 (2015)CrossRef
17.
go back to reference Chung, N, Kang, D, Kim, D, “Preparation and Properties of Cross-linked Poly(ethylene glycol)/Poly[(vinylidene fluoride)-co-hexafluoropropylene] Interpenetrating Network-Type Electrolytes for Secondary Lithium Batteries.” Polym. Int., 54 1153–1157 (2005)CrossRef Chung, N, Kang, D, Kim, D, “Preparation and Properties of Cross-linked Poly(ethylene glycol)/Poly[(vinylidene fluoride)-co-hexafluoropropylene] Interpenetrating Network-Type Electrolytes for Secondary Lithium Batteries.” Polym. Int., 54 1153–1157 (2005)CrossRef
18.
go back to reference Fan, L, Dang, Z, Nan, C-W, Li, M, “Thermal, Electrical and Mechanical Properties of Plasticized Polymer Electrolytes Based on PEO/P(VDF-HFP) Blends.” Electrochim. Acta, 48 205–209 (2002)CrossRef Fan, L, Dang, Z, Nan, C-W, Li, M, “Thermal, Electrical and Mechanical Properties of Plasticized Polymer Electrolytes Based on PEO/P(VDF-HFP) Blends.” Electrochim. Acta, 48 205–209 (2002)CrossRef
19.
go back to reference Ren, Z, et al., “Polymer Electrolytes Based on Poly(vinylidene fluoride-co-hexafluoropropylene) with Crosslinked Poly(ethylene glycol) for Lithium Batteries.” Solid State Ion., 180 693–697 (2009)CrossRef Ren, Z, et al., “Polymer Electrolytes Based on Poly(vinylidene fluoride-co-hexafluoropropylene) with Crosslinked Poly(ethylene glycol) for Lithium Batteries.” Solid State Ion., 180 693–697 (2009)CrossRef
20.
go back to reference Li, H, et al., “Gel Polymer Electrolytes Based on Active PVDF Separator for Lithium Ion Battery. I: Preparation and Property of PVDF/Poly(dimethylsiloxane) Blending Membrane.” J. Membr. Sci., 379 397–402 (2011)CrossRef Li, H, et al., “Gel Polymer Electrolytes Based on Active PVDF Separator for Lithium Ion Battery. I: Preparation and Property of PVDF/Poly(dimethylsiloxane) Blending Membrane.” J. Membr. Sci., 379 397–402 (2011)CrossRef
21.
go back to reference Li, H, et al., “Preparation and Properties of Poly(vinylidene fluoride)/Poly(dimethylsiloxane) Graft (Poly(propylene oxide)-block-Poly(ethylene oxide)) Blend Porous Separators and Corresponding Electrolytes.” Electrochim. Acta, 116 413–420 (2014)CrossRef Li, H, et al., “Preparation and Properties of Poly(vinylidene fluoride)/Poly(dimethylsiloxane) Graft (Poly(propylene oxide)-block-Poly(ethylene oxide)) Blend Porous Separators and Corresponding Electrolytes.” Electrochim. Acta, 116 413–420 (2014)CrossRef
22.
go back to reference Liu, F, Hashim, NA, Liu, Y, Abed, MRM, Li, K, “Progress in the Production and Modification of PVDF Membranes.” J. Membr. Sci., 375 1–27 (2011)CrossRef Liu, F, Hashim, NA, Liu, Y, Abed, MRM, Li, K, “Progress in the Production and Modification of PVDF Membranes.” J. Membr. Sci., 375 1–27 (2011)CrossRef
23.
go back to reference Cznotka, E, Jeschke, S, Wiemhöfer, H-D, “Characterization of Semi-interpenetrating Polymer Electrolytes Containing Poly(vinylidene fluoride-co-hexafluoropropylene) and Ether-Modified Polysiloxane.” J. Membr. Sci. (submitted) Cznotka, E, Jeschke, S, Wiemhöfer, H-D, “Characterization of Semi-interpenetrating Polymer Electrolytes Containing Poly(vinylidene fluoride-co-hexafluoropropylene) and Ether-Modified Polysiloxane.” J. Membr. Sci. (submitted)
24.
go back to reference Tang, S, Zhao, H, “Glymes as Versatile Solvents for Chemical Reactions and Processes: From the Laboratory to Industry.” RSC Adv., 4 11251 (2014)CrossRef Tang, S, Zhao, H, “Glymes as Versatile Solvents for Chemical Reactions and Processes: From the Laboratory to Industry.” RSC Adv., 4 11251 (2014)CrossRef
25.
go back to reference Gladysz, J, Curran, DP, “Fluorous Chemistry: From Biphasic Catalysis to a Parallel Chemical Universe and Beyond.” Tetrahedron, 58 3823–3825 (2002)CrossRef Gladysz, J, Curran, DP, “Fluorous Chemistry: From Biphasic Catalysis to a Parallel Chemical Universe and Beyond.” Tetrahedron, 58 3823–3825 (2002)CrossRef
26.
go back to reference Hooper, R, et al., “Highly Conductive Siloxane Polymers.” Macromolecules, 34 931–936 (2001)CrossRef Hooper, R, et al., “Highly Conductive Siloxane Polymers.” Macromolecules, 34 931–936 (2001)CrossRef
27.
go back to reference Bufton, JL, “Laser Altimetry Measurements from Aircraft and Spacecraft.” Proc. IEEE, 77 463–477 (1989)CrossRef Bufton, JL, “Laser Altimetry Measurements from Aircraft and Spacecraft.” Proc. IEEE, 77 463–477 (1989)CrossRef
28.
go back to reference Fifer-Bizjak, K, “Determining the Surface Roughness Coefficient by 3D Scanner.” Geologija, 53 147–152 (2010)CrossRef Fifer-Bizjak, K, “Determining the Surface Roughness Coefficient by 3D Scanner.” Geologija, 53 147–152 (2010)CrossRef
29.
go back to reference Kukko, A, Anttila, K, Manninen, T, Kaasalainen, S, Kaartinen, H, “Snow Surface Roughness from Mobile Laser Scanning Data.” Cold Reg. Sci. Technol., 96 23–35 (2013)CrossRef Kukko, A, Anttila, K, Manninen, T, Kaasalainen, S, Kaartinen, H, “Snow Surface Roughness from Mobile Laser Scanning Data.” Cold Reg. Sci. Technol., 96 23–35 (2013)CrossRef
30.
go back to reference Siewczyńska, M, “Method for Determining the Parameters of Surface Roughness by Usage of a 3D Scanner.” Arch. Civ. Mech. Eng., 12 83–89 (2012)CrossRef Siewczyńska, M, “Method for Determining the Parameters of Surface Roughness by Usage of a 3D Scanner.” Arch. Civ. Mech. Eng., 12 83–89 (2012)CrossRef
31.
go back to reference Klamt, A, “The COSMO and COSMO-RS Solvation Models.” Wiley Interdiscip. Rev. Comput. Mol. Sci., 1 699–709 (2011)CrossRef Klamt, A, “The COSMO and COSMO-RS Solvation Models.” Wiley Interdiscip. Rev. Comput. Mol. Sci., 1 699–709 (2011)CrossRef
33.
go back to reference Klamt, A, Jonas, V, Bürger, T, Lohrenz, JCW, “Refinement and Parametrization of COSMO-RS.” J. Phys. Chem. A, 102 5074–5085 (1998)CrossRef Klamt, A, Jonas, V, Bürger, T, Lohrenz, JCW, “Refinement and Parametrization of COSMO-RS.” J. Phys. Chem. A, 102 5074–5085 (1998)CrossRef
34.
go back to reference Jankowsky, S, Hiller, MM, Wiemhöfer, H-D, “Preparation and Electrochemical Performance of Polyphosphazene Based Salt-in-Polymer Electrolyte Membranes for Lithium Ion Batteries.” J. Power Sources, 253 256–262 (2014)CrossRef Jankowsky, S, Hiller, MM, Wiemhöfer, H-D, “Preparation and Electrochemical Performance of Polyphosphazene Based Salt-in-Polymer Electrolyte Membranes for Lithium Ion Batteries.” J. Power Sources, 253 256–262 (2014)CrossRef
35.
go back to reference Allcock, HR, Nelson, JM, Reeves, SD, Honeyman, CH, Manners, I, “Ambient-Temperature Direct Synthesis of Poly(organophosphazenes) via the ‘Living’ Cationic Polymerization of Organo-Substituted Phosphoranimines.” Macromolecules, 30 50–56 (1997)CrossRef Allcock, HR, Nelson, JM, Reeves, SD, Honeyman, CH, Manners, I, “Ambient-Temperature Direct Synthesis of Poly(organophosphazenes) via the ‘Living’ Cationic Polymerization of Organo-Substituted Phosphoranimines.” Macromolecules, 30 50–56 (1997)CrossRef
36.
go back to reference Allcock, HR, Krause, WE, “Polyphosphazenes with Adamantyl Side Groups.” Macromolecules, 30 5683–5687 (1997)CrossRef Allcock, HR, Krause, WE, “Polyphosphazenes with Adamantyl Side Groups.” Macromolecules, 30 5683–5687 (1997)CrossRef
37.
go back to reference Li, M, et al., “Controlling the Microstructure of Poly(vinylidene-fluoride) (PVDF) Thin Films for Microelectronics.” J. Mater. Chem. C, 1 7695–7702 (2013)CrossRef Li, M, et al., “Controlling the Microstructure of Poly(vinylidene-fluoride) (PVDF) Thin Films for Microelectronics.” J. Mater. Chem. C, 1 7695–7702 (2013)CrossRef
38.
go back to reference Stewart, JJP, “MOPAC: A Semiempirical Molecular Orbital Program.” J. Comput. Aided Mol. Des., 4, 1–103 (1990)CrossRef Stewart, JJP, “MOPAC: A Semiempirical Molecular Orbital Program.” J. Comput. Aided Mol. Des., 4, 1–103 (1990)CrossRef
39.
go back to reference Maia, JDC, et al., “GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.” J. Chem. Theory Comput., 8 3072–3081 (2012)CrossRef Maia, JDC, et al., “GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.” J. Chem. Theory Comput., 8 3072–3081 (2012)CrossRef
40.
go back to reference Stewart, JJP, “Optimization of Parameters for Semiempirical Methods VI: More Modifications to the NDDO Approximations and Re-optimization of Parameters.” J. Mol. Model., 19 1–32 (2013)CrossRef Stewart, JJP, “Optimization of Parameters for Semiempirical Methods VI: More Modifications to the NDDO Approximations and Re-optimization of Parameters.” J. Mol. Model., 19 1–32 (2013)CrossRef
41.
go back to reference Allouche, A-R, “Gabedit—A Graphical User Interface for Computational Chemistry Softwares.” J. Comput. Chem., 32 174–182 (2011)CrossRef Allouche, A-R, “Gabedit—A Graphical User Interface for Computational Chemistry Softwares.” J. Comput. Chem., 32 174–182 (2011)CrossRef
42.
go back to reference TURBOMOLE, University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 2007 TURBOMOLE, University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 2007
43.
go back to reference Ahlrichs, R, Bär, M, Häser, M, Horn, H, Kölmel, C, “Electronic Structure Calculations on Workstation Computers: The Program System Turbomole.” Chem. Phys. Lett., 162 165–169 (1989)CrossRef Ahlrichs, R, Bär, M, Häser, M, Horn, H, Kölmel, C, “Electronic Structure Calculations on Workstation Computers: The Program System Turbomole.” Chem. Phys. Lett., 162 165–169 (1989)CrossRef
44.
go back to reference Becke, AD, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior.” Phys. Rev. A, 38 3098–3100 (1988)CrossRef Becke, AD, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior.” Phys. Rev. A, 38 3098–3100 (1988)CrossRef
45.
go back to reference Perdew, JP, “Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas.” Phys. Rev. B, 33 8822–8824 (1986)CrossRef Perdew, JP, “Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas.” Phys. Rev. B, 33 8822–8824 (1986)CrossRef
46.
go back to reference Schäfer, A, Huber, C, Ahlrichs, R, “Fully Optimized Contracted Gaussian Basis Sets of Triple Zeta Valence Quality for Atoms Li to Kr.” J. Chem. Phys., 100 5829 (1994)CrossRef Schäfer, A, Huber, C, Ahlrichs, R, “Fully Optimized Contracted Gaussian Basis Sets of Triple Zeta Valence Quality for Atoms Li to Kr.” J. Chem. Phys., 100 5829 (1994)CrossRef
47.
go back to reference Loschen, C, Klamt, A, “Prediction of Solubilities and Partition Coefficients in Polymers Using COSMO-RS.” Ind. Eng. Chem. Res., 53 11478–11487 (2014)CrossRef Loschen, C, Klamt, A, “Prediction of Solubilities and Partition Coefficients in Polymers Using COSMO-RS.” Ind. Eng. Chem. Res., 53 11478–11487 (2014)CrossRef
48.
go back to reference Fox, TG, Flory, PJ, “Second-Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight.” J. Appl. Phys., 21 581 (1950)CrossRef Fox, TG, Flory, PJ, “Second-Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight.” J. Appl. Phys., 21 581 (1950)CrossRef
49.
go back to reference Bharti, A, Banerjee, T, “Solubility Prediction of Bio-oil Derived Chemicals in Aqueous Media by Localized Molecular Orbital-Energy Decomposition Analysis (LMO-EDA) and COSMO-RS predictions.” Comput. Theor. Chem., 1067 48–59 (2015)CrossRef Bharti, A, Banerjee, T, “Solubility Prediction of Bio-oil Derived Chemicals in Aqueous Media by Localized Molecular Orbital-Energy Decomposition Analysis (LMO-EDA) and COSMO-RS predictions.” Comput. Theor. Chem., 1067 48–59 (2015)CrossRef
50.
go back to reference Garcia-Chavez, LY, Hermans, AJ, Schuur, B, de Haan, AB, “COSMO-RS Assisted Solvent Screening for Liquid–Liquid Extraction of Mono Ethylene Glycol from Aqueous Streams.” Sep. Purif. Technol., 97 2–10 (2012)CrossRef Garcia-Chavez, LY, Hermans, AJ, Schuur, B, de Haan, AB, “COSMO-RS Assisted Solvent Screening for Liquid–Liquid Extraction of Mono Ethylene Glycol from Aqueous Streams.” Sep. Purif. Technol., 97 2–10 (2012)CrossRef
51.
go back to reference Klamt, A, Eckert, F, “COSMO-RS: A Novel and Efficient Method for the A Priori Prediction of Thermophysical Data of Liquids.” Fluid Phase Equilib., 172 43–72 (2000)CrossRef Klamt, A, Eckert, F, “COSMO-RS: A Novel and Efficient Method for the A Priori Prediction of Thermophysical Data of Liquids.” Fluid Phase Equilib., 172 43–72 (2000)CrossRef
52.
go back to reference Hallinan, DT, Balsara, NP, “Polymer Electrolytes.” Annu. Rev. Mater. Res., 43 503–525 (2013)CrossRef Hallinan, DT, Balsara, NP, “Polymer Electrolytes.” Annu. Rev. Mater. Res., 43 503–525 (2013)CrossRef
53.
go back to reference Meyer, WH, “Polymer Electrolytes for Lithium-Ion Batteries.” Adv. Mater. Deerfield Beach Fla, 10 439–448 (1998) Meyer, WH, “Polymer Electrolytes for Lithium-Ion Batteries.” Adv. Mater. Deerfield Beach Fla, 10 439–448 (1998)
Metadata
Title
3D laser scanning confocal microscopy of siloxane-based comb and double-comb polymers in PVDF-HFP thin films
Authors
Eva Cznotka
Steffen Jeschke
Sebastian Schmohl
Patrik Johansson
Hans-Dieter Wiemhöfer
Publication date
22-01-2016
Publisher
Springer US
Published in
Journal of Coatings Technology and Research / Issue 4/2016
Print ISSN: 1547-0091
Electronic ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-015-9754-4

Other articles of this Issue 4/2016

Journal of Coatings Technology and Research 4/2016 Go to the issue

Premium Partners