Skip to main content
Top

2020 | OriginalPaper | Chapter

5. 3D Metamaterial Multilayer Structures

Authors : G. Husna Khouser, Yogesh Kumar Choukiker

Published in: Multiscale Modelling of Advanced Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The word “Meta” is taken from Greek whose meaning is “beyond”. “Metamaterials” have the exotic properties beyond the naturally occurring materials. According to Wikipedia, metamaterial is defined as “a material which gains its properties from its structure rather than directly from its composition”.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Vesalogo VG (1968) The electrodynamics of substances with simultaneously negative values of permittivity and magnetic permeability. Soviet Phys 10:509–514CrossRef Vesalogo VG (1968) The electrodynamics of substances with simultaneously negative values of permittivity and magnetic permeability. Soviet Phys 10:509–514CrossRef
3.
go back to reference Walser RM (2001) Electromagnetic metamaterial. In: Proceedings of SPIE 4467, pp 1–15 Walser RM (2001) Electromagnetic metamaterial. In: Proceedings of SPIE 4467, pp 1–15
4.
go back to reference Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1998) Low frequency plasmons for thin-wire structure. J Phys Condens Matter 10:4785–4809CrossRef Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1998) Low frequency plasmons for thin-wire structure. J Phys Condens Matter 10:4785–4809CrossRef
5.
go back to reference Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theor Techniques 47(11):2075–2084CrossRef Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theor Techniques 47(11):2075–2084CrossRef
7.
go back to reference Ziolkowski RW, Heyman E (2001) Wave propagation in media having negative permittivity and permeability. Phys Rev E 64 Ziolkowski RW, Heyman E (2001) Wave propagation in media having negative permittivity and permeability. Phys Rev E 64
8.
go back to reference Alù A, Engheta N (2003) Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency. IEEE Trans Antennas Propag Special issue on metamaterials 51, 10:2558–2571CrossRef Alù A, Engheta N (2003) Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency. IEEE Trans Antennas Propag Special issue on metamaterials 51, 10:2558–2571CrossRef
9.
go back to reference Pendry JB, Holden AJ, Stewart WJ, Youngs I (1996) Extremely low frequency plasmas in metallic microstructures. Phys Rev Lett 76:4773–4776 Pendry JB, Holden AJ, Stewart WJ, Youngs I (1996) Extremely low frequency plasmas in metallic microstructures. Phys Rev Lett 76:4773–4776
10.
go back to reference Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theor Techniq 47(11):2075–2084CrossRef Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theor Techniq 47(11):2075–2084CrossRef
11.
go back to reference Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84, 18:4184–4187CrossRef Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84, 18:4184–4187CrossRef
12.
go back to reference Shelby RA, Smith DR, Schultz S (2001) Experimental verification of negative index of refraction. Science 292:5514CrossRef Shelby RA, Smith DR, Schultz S (2001) Experimental verification of negative index of refraction. Science 292:5514CrossRef
13.
go back to reference Cui TJ, Kong JA (2004) Time-domain electromagnetic energy in a frequency-dispersive left handed medium. Phys Rev B 70:205106CrossRef Cui TJ, Kong JA (2004) Time-domain electromagnetic energy in a frequency-dispersive left handed medium. Phys Rev B 70:205106CrossRef
14.
go back to reference Aydina K, Ozbay E (2007) Capacitor-loaded split ring resonators as tunable metamaterial components. J Appl Phys 101:024911CrossRef Aydina K, Ozbay E (2007) Capacitor-loaded split ring resonators as tunable metamaterial components. J Appl Phys 101:024911CrossRef
15.
go back to reference Simovski CR, He S (2003) Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed for lattice of perfectly conducting Ω-particle. Phys Lett A 311:254 (2003) Simovski CR, He S (2003) Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed for lattice of perfectly conducting Ω-particle. Phys Lett A 311:254 (2003)
16.
go back to reference Caloz C, Itoh T (2002) Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line. IEEE-AP-S Digest 2, 412–415, San Antonio, TX Caloz C, Itoh T (2002) Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line. IEEE-AP-S Digest 2, 412–415, San Antonio, TX
17.
go back to reference Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley. IEEE Press Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley. IEEE Press
18.
go back to reference Caloz C, Itoh T (2004) Transmission line approach of left-handed (LH) structures and microstrip realization of a low-loss broadband LH filter. IEEE Trans Antennas Propagat 52:1159–1166CrossRef Caloz C, Itoh T (2004) Transmission line approach of left-handed (LH) structures and microstrip realization of a low-loss broadband LH filter. IEEE Trans Antennas Propagat 52:1159–1166CrossRef
19.
go back to reference Iyer AK, Eleftheriades GV (2002) Negative refractive index metamaterials supporting 2-D waves. In: Proceedings of IEEE international symposium on microwave theory and technology 2:1067–1070. Seattle, WA Iyer AK, Eleftheriades GV (2002) Negative refractive index metamaterials supporting 2-D waves. In: Proceedings of IEEE international symposium on microwave theory and technology 2:1067–1070. Seattle, WA
21.
go back to reference Marqués R, Mesa F, Martel J, Medina F (2003) Comparative analysis of edge- and broadside coupled split ring resonators for metamaterial design—theory and experiments. IEEE Trans Antennas Propag 51:10CrossRef Marqués R, Mesa F, Martel J, Medina F (2003) Comparative analysis of edge- and broadside coupled split ring resonators for metamaterial design—theory and experiments. IEEE Trans Antennas Propag 51:10CrossRef
22.
go back to reference Aznar F, Gil M, Bonache J, Garcia-Garcia J, Martin F (2007) Metamaterial transmission lines based on broad-side coupled spiral resonators. Electron Lett 43:9CrossRef Aznar F, Gil M, Bonache J, Garcia-Garcia J, Martin F (2007) Metamaterial transmission lines based on broad-side coupled spiral resonators. Electron Lett 43:9CrossRef
23.
go back to reference Chen H, Ran L, Huangfu J, Zhang X, Chen K (2004) Left-handed materials composed of only S-shaped resonators. Phys Rev E 70:1–4 Chen H, Ran L, Huangfu J, Zhang X, Chen K (2004) Left-handed materials composed of only S-shaped resonators. Phys Rev E 70:1–4
24.
go back to reference O’brien S, Pendry JB (2002) Magnetic activity at infrared frequencies in structured metallic photonic crystals. J Phys Condens Matter 14:6383–6394 O’brien S, Pendry JB (2002) Magnetic activity at infrared frequencies in structured metallic photonic crystals. J Phys Condens Matter 14:6383–6394
25.
go back to reference Noginov MA, Podolskiy VA (2012) Tutorials in metamaterial. Series in nano optics and nanophotonic. Taylor and Francis Noginov MA, Podolskiy VA (2012) Tutorials in metamaterial. Series in nano optics and nanophotonic. Taylor and Francis
26.
go back to reference Tanaka T, Ishikawa A (2017) Towards three-dimensional optical metamaterial. Nano Convergence 4:1–6 Tanaka T, Ishikawa A (2017) Towards three-dimensional optical metamaterial. Nano Convergence 4:1–6
27.
go back to reference Iyer AK, Eleftheriades GV (2008) Three-dimensional isotropic transmission-line metamaterial topology for free-space excitation. J Appl Phys 92:106–261 Iyer AK, Eleftheriades GV (2008) Three-dimensional isotropic transmission-line metamaterial topology for free-space excitation. J Appl Phys 92:106–261
28.
go back to reference Baena JD, Jelinek L, Marques R, Zehentner J (2006) Electrically small isotropic three-dimensional magnetic resonators for metamaterial design. Appl Phys Lett 88:13, 134108CrossRef Baena JD, Jelinek L, Marques R, Zehentner J (2006) Electrically small isotropic three-dimensional magnetic resonators for metamaterial design. Appl Phys Lett 88:13, 134108CrossRef
29.
go back to reference Silveirinha MG, Fernandes CA (2005) Homogenization of 3-d-connected and nonconnected wire metamaterials. IEEE Trans Microw Theor Tech 53(4):1418–1430CrossRef Silveirinha MG, Fernandes CA (2005) Homogenization of 3-d-connected and nonconnected wire metamaterials. IEEE Trans Microw Theor Tech 53(4):1418–1430CrossRef
30.
go back to reference Sajuyigbe S, Justice BJ, Starr AF, Smith DR (2009) Design and analysis of three dimensionalized ELC metamaterial Unit Cell. IEEE Antennas Wireless Propag Lett 8:1268–1271CrossRef Sajuyigbe S, Justice BJ, Starr AF, Smith DR (2009) Design and analysis of three dimensionalized ELC metamaterial Unit Cell. IEEE Antennas Wireless Propag Lett 8:1268–1271CrossRef
31.
go back to reference Varadan VV, Kim IK (2012) Fabrication of 3-D metamaterials using LTCC techniques for high-frequency application. IEEE Trans Components Packaging Manufact Technol 2:410–417CrossRef Varadan VV, Kim IK (2012) Fabrication of 3-D metamaterials using LTCC techniques for high-frequency application. IEEE Trans Components Packaging Manufact Technol 2:410–417CrossRef
32.
go back to reference Yu K, Li Y, Liu X (2018) Mutual coupling reduction of a MIMO antenna array using 3-D novel meta-material structures. Appl Comput Electromag Soc J 33:758–762 Yu K, Li Y, Liu X (2018) Mutual coupling reduction of a MIMO antenna array using 3-D novel meta-material structures. Appl Comput Electromag Soc J 33:758–762
33.
go back to reference Islam SS, Faruque MR, Islam MT (2015) A new direct retrieval method of refractive index for the metamaterial. Curr Sci 109:337–342 Islam SS, Faruque MR, Islam MT (2015) A new direct retrieval method of refractive index for the metamaterial. Curr Sci 109:337–342
34.
go back to reference Nicolson AM, Ross GF (1970) Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans Instrument Measure 19:377–382CrossRef Nicolson AM, Ross GF (1970) Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans Instrument Measure 19:377–382CrossRef
35.
go back to reference Morse PM, Feshbach H (1953) Derivatives of analytic functions, Taylor and Laurent series. Methods Theor Phys Part I 374–398 Morse PM, Feshbach H (1953) Derivatives of analytic functions, Taylor and Laurent series. Methods Theor Phys Part I 374–398
36.
go back to reference Baena JD, Bonache J, Martin F et al (2005) Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission line. IEEE Trans Microw Theor Techniques 53:1451–1461CrossRef Baena JD, Bonache J, Martin F et al (2005) Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission line. IEEE Trans Microw Theor Techniques 53:1451–1461CrossRef
Metadata
Title
3D Metamaterial Multilayer Structures
Authors
G. Husna Khouser
Yogesh Kumar Choukiker
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2267-3_5