Skip to main content
Top

2016 | OriginalPaper | Chapter

3D Numerical Simulations of Particle–Water Interaction Using a Virtual Approach

Authors : Varvara Roubtsova, Mohamed Chekired

Published in: Advances in Hydroinformatics

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Three-dimensional flow of a Newtonian fluid through porous media consisting of multisized perfectly spherical beads is numerically simulated. Porous media are virtually and randomly generated, in accordance with the particle size distribution. All the physical features of the porous media are fully represented and considered, in order to closely mimic the heterogeneity of these media. Simulations show that the smallest particles strongly affect the streamline shape by imposing small pores and small throats, and also by providing the shortest paths. The third dimension has a particular effect, which is to allow the streamlines to follow the path of least resistance, where the least amount of energy is required to produce the motion of a fluid particle. Once the three-dimensional images have been produced, the proposed model provides a three-dimensional representation of the streamlines and their velocity. Unfortunately, the results currently generated do not agree well with those proposed in the literature. Consequently, there is a pressing need to verify these results by conducting more numerical tests.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hazen, A. (1892). Some physical properties of sands and gravels, with special reference to their use in filtration. In 24th Annual Report, Massachusetts State Board of Health, Publication. Doc. No. 34 (pp. 539–556). Hazen, A. (1892). Some physical properties of sands and gravels, with special reference to their use in filtration. In 24th Annual Report, Massachusetts State Board of Health, Publication. Doc. No. 34 (pp. 539–556).
2.
go back to reference Carman, P. C. (1956). Flow of gases through porous media. London: Butterworths Scientific Publications.MATH Carman, P. C. (1956). Flow of gases through porous media. London: Butterworths Scientific Publications.MATH
3.
go back to reference Shepherd, R. G. (1989). Correlations of permeability and grain size. Ground Water, 27(5), 633–638.CrossRef Shepherd, R. G. (1989). Correlations of permeability and grain size. Ground Water, 27(5), 633–638.CrossRef
4.
go back to reference Alyamani, M. S., & Sen, Z. (1993). Determination of hydraulic conductivity from grain size distribution curves. Ground Water, 31, 551–555.CrossRef Alyamani, M. S., & Sen, Z. (1993). Determination of hydraulic conductivity from grain size distribution curves. Ground Water, 31, 551–555.CrossRef
5.
go back to reference Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. New York: Wiley. Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. New York: Wiley.
6.
go back to reference Kenney, T. C., Lau, D., & Ofoegbu, G. I. (1984). Permeability of compacted granular materials. Canadian Geotechnical Journal, 21, 726–729.CrossRef Kenney, T. C., Lau, D., & Ofoegbu, G. I. (1984). Permeability of compacted granular materials. Canadian Geotechnical Journal, 21, 726–729.CrossRef
7.
go back to reference Chapuis, R. P. (2004). Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Canadian Geotechnical Journal, 41, 787–795.CrossRef Chapuis, R. P. (2004). Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Canadian Geotechnical Journal, 41, 787–795.CrossRef
8.
go back to reference Kresic, N. (1998). Quantitative solutions in hydrogeology and groundwater modeling. Florida: Lewis Publishers. Kresic, N. (1998). Quantitative solutions in hydrogeology and groundwater modeling. Florida: Lewis Publishers.
9.
go back to reference Carman, P. C. (1937) Fluid flow through granular bed. Transactions of the Institution of Chemical Engineers, London, 15, 150–166. Carman, P. C. (1937) Fluid flow through granular bed. Transactions of the Institution of Chemical Engineers, London, 15, 150–166.
10.
go back to reference Slichter, C. S. (1898). Theoretical investigation of the motion of ground waters. In 19th Annual Report. U.S. Geology Survey, USA. Slichter, C. S. (1898). Theoretical investigation of the motion of ground waters. In 19th Annual Report. U.S. Geology Survey, USA.
11.
go back to reference Vukovic, M., & Soro, A. (1992). Determination of hydraulic conductivity of porous media from Grain-Size composition. USA: Water Resources Publications. Vukovic, M., & Soro, A. (1992). Determination of hydraulic conductivity of porous media from Grain-Size composition. USA: Water Resources Publications.
12.
go back to reference Odong, J. (2007). Evaluation of the empirical formulae for determination of hydraulic conductivity based on grain size analysis. Journal of American Science, 3, 54–60. Odong, J. (2007). Evaluation of the empirical formulae for determination of hydraulic conductivity based on grain size analysis. Journal of American Science, 3, 54–60.
13.
go back to reference Zinovik, D., & Poulikakos, D. (2012). On the permeability of fractal tube bundles. Transport in Porous Media, 94, 747–757.CrossRef Zinovik, D., & Poulikakos, D. (2012). On the permeability of fractal tube bundles. Transport in Porous Media, 94, 747–757.CrossRef
14.
go back to reference Andrey, P. J., Cathy, H., Friday, E., Samuel, A. Mc D, & Philip, J. W. (2013). A novel architecture for pore network modelling with applications to permeability of porous media. Journal of Hydrology, 486, 246–258.CrossRef Andrey, P. J., Cathy, H., Friday, E., Samuel, A. Mc D, & Philip, J. W. (2013). A novel architecture for pore network modelling with applications to permeability of porous media. Journal of Hydrology, 486, 246–258.CrossRef
15.
go back to reference Chapuis, R. P., & Aubertin, M. (2003). On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils. Canadian Geotechnical Journal, 40(3), 616–628.CrossRef Chapuis, R. P., & Aubertin, M. (2003). On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils. Canadian Geotechnical Journal, 40(3), 616–628.CrossRef
16.
go back to reference Dunn, R. J., & Mitchell, J. K. (1984). Fluid Conductivity Testing of Fine-Grained Soil. Journal of Geotechnical Engineering, 110(11), 1648–1665.CrossRef Dunn, R. J., & Mitchell, J. K. (1984). Fluid Conductivity Testing of Fine-Grained Soil. Journal of Geotechnical Engineering, 110(11), 1648–1665.CrossRef
17.
go back to reference Strizhov, A. A., & Khalilov, V. S. (1994). Structure of wall flow through a channel with a granular bed. Fluid Dynamics, 29(6), 745–748.CrossRefMATH Strizhov, A. A., & Khalilov, V. S. (1994). Structure of wall flow through a channel with a granular bed. Fluid Dynamics, 29(6), 745–748.CrossRefMATH
18.
go back to reference Daniel, D. E. & Trautwein, S. J. (1986). Field permeability test for earthen liner. In Proceedings Institute 86, ASCE Specialty Conference on Use of In-situ Tests in Geotechnical Engineering. Virginia Polytechnic Institute and State University Blacksburg, New York (pp. 146–160). Daniel, D. E. & Trautwein, S. J. (1986). Field permeability test for earthen liner. In Proceedings Institute 86, ASCE Specialty Conference on Use of In-situ Tests in Geotechnical Engineering. Virginia Polytechnic Institute and State University Blacksburg, New York (pp. 146–160).
19.
go back to reference Cundall, P., & Strack, O. (1979). A Discrete numerical model for granular assemblies. Geotechnique, 29(1), 47–65.CrossRef Cundall, P., & Strack, O. (1979). A Discrete numerical model for granular assemblies. Geotechnique, 29(1), 47–65.CrossRef
20.
go back to reference Roubtsova, V., Chekired, M., Morin B., & Karray, M. (2011). 3D virtual laboratory for geotechnical applications: An other perspective. In Particles 2011, II International Conference on Particle-based Methods Fundamentals and Applications, Barcelona, Spain, October 26–28, 2011. Roubtsova, V., Chekired, M., Morin B., & Karray, M. (2011). 3D virtual laboratory for geotechnical applications: An other perspective. In Particles 2011, II International Conference on Particle-based Methods Fundamentals and Applications, Barcelona, Spain, October 26–28, 2011.
21.
go back to reference Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. The Physics of Fluids, 8, 2182–2189.CrossRefMATH Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. The Physics of Fluids, 8, 2182–2189.CrossRefMATH
22.
go back to reference Fortin, M., Peyret, R., & Temam, R. (1971). Résolution numériques des équations de Navier-Stokes pour un fluide incompressible. Journal de Mécanique, 10(3), 357–390.MathSciNetMATH Fortin, M., Peyret, R., & Temam, R. (1971). Résolution numériques des équations de Navier-Stokes pour un fluide incompressible. Journal de Mécanique, 10(3), 357–390.MathSciNetMATH
23.
go back to reference Belotserkovsky, O. M. (1994). Numerical modeling in the mechanics of continuous media. Moscow: Physico-matematic literature. (in Russian). Belotserkovsky, O. M. (1994). Numerical modeling in the mechanics of continuous media. Moscow: Physico-matematic literature. (in Russian).
24.
go back to reference Chekired, M. & Roubtsova, V. (2013) Virtual reality 3D interaction of fluid-particle simulations. In V International Conference on Coupled Problems in Science and Engineering, Ibiza, Spain, June 17–19. Chekired, M. & Roubtsova, V. (2013) Virtual reality 3D interaction of fluid-particle simulations. In V International Conference on Coupled Problems in Science and Engineering, Ibiza, Spain, June 17–19.
25.
go back to reference Kalthoff, W., Schawarzer, S., & Herrmann, H. J. (1997). Algorithm for the simulation of particle suspension with inertia effects. Physical Review E, 56, 2234–2242. Kalthoff, W., Schawarzer, S., & Herrmann, H. J. (1997). Algorithm for the simulation of particle suspension with inertia effects. Physical Review E, 56, 2234–2242.
26.
go back to reference Roubtsova, V., Chekired, M., Ethier, Y., & Avendano, F. (2012). SIMSOLS: A 3D virtual laboratory for geotechnical applications. In ICSE6 Paris, August 27–31. Roubtsova, V., Chekired, M., Ethier, Y., & Avendano, F. (2012). SIMSOLS: A 3D virtual laboratory for geotechnical applications. In ICSE6 Paris, August 27–31.
27.
go back to reference Bear, J. (1972) Dynamics of fluids in porous media. New York: American Elsevier Publishing Company, Inc. Bear, J. (1972) Dynamics of fluids in porous media. New York: American Elsevier Publishing Company, Inc.
28.
go back to reference Baveye, P., & Sposito, G. (1984). The operational significance of the continuum hypothesis in the theory of water movement through soils and aquifers. Water Resources Research, 20(5), 521–530.CrossRef Baveye, P., & Sposito, G. (1984). The operational significance of the continuum hypothesis in the theory of water movement through soils and aquifers. Water Resources Research, 20(5), 521–530.CrossRef
29.
go back to reference Mayer, A. S., & Miller, C. T. (1992). The influence of porous medium characteristics and measurement scale on pore-scale distributions of residual nonaqueous-phase liquids. Journal of Contaminant Hydrology, 11, 189–213.CrossRef Mayer, A. S., & Miller, C. T. (1992). The influence of porous medium characteristics and measurement scale on pore-scale distributions of residual nonaqueous-phase liquids. Journal of Contaminant Hydrology, 11, 189–213.CrossRef
30.
go back to reference Zhang, D., Zhang, R., Chen, S., & Soll, W. E. (2000). Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV. Geophysical Reseach Letters, 27(8), 1195–1198.CrossRef Zhang, D., Zhang, R., Chen, S., & Soll, W. E. (2000). Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV. Geophysical Reseach Letters, 27(8), 1195–1198.CrossRef
31.
go back to reference Razavi, M. R., Muhunthan, B., & Al Hattamleh, O. (2007). Representative elementary volume analysis of sands using x-ray computed tomography. Geotechnical Testing Journal, 30(3), 212–219.CrossRef Razavi, M. R., Muhunthan, B., & Al Hattamleh, O. (2007). Representative elementary volume analysis of sands using x-ray computed tomography. Geotechnical Testing Journal, 30(3), 212–219.CrossRef
32.
go back to reference Nordahl, K., & Ringrose, P. S. (2008). Identifying the representative elementary volume for permeability in heterolithic deposits using numerical rock models. Mathematical Geosciences, 40, 753–771.CrossRef Nordahl, K., & Ringrose, P. S. (2008). Identifying the representative elementary volume for permeability in heterolithic deposits using numerical rock models. Mathematical Geosciences, 40, 753–771.CrossRef
33.
go back to reference Salama, A., & Van Geel, P. J. (2008). Flow and solute transport in saturated porous media: 1. The continuum hypothesis. Journal of Porous Media, 11(4), 403–413.CrossRef Salama, A., & Van Geel, P. J. (2008). Flow and solute transport in saturated porous media: 1. The continuum hypothesis. Journal of Porous Media, 11(4), 403–413.CrossRef
34.
go back to reference Li, J. H., Zhang, L. M., Wang, Y., & Fredlund, D. G. (2009). Permeability tensor and representative elementary volume of saturated cracked soil. Canadian Geotechnical Journal, 46, 928–942.CrossRef Li, J. H., Zhang, L. M., Wang, Y., & Fredlund, D. G. (2009). Permeability tensor and representative elementary volume of saturated cracked soil. Canadian Geotechnical Journal, 46, 928–942.CrossRef
35.
go back to reference Scheidegger, A. E. (1963). The Physics of Flow Through Porous Media. Toronto: University of Toronto Press. Scheidegger, A. E. (1963). The Physics of Flow Through Porous Media. Toronto: University of Toronto Press.
Metadata
Title
3D Numerical Simulations of Particle–Water Interaction Using a Virtual Approach
Authors
Varvara Roubtsova
Mohamed Chekired
Copyright Year
2016
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-615-7_39