Skip to main content

2016 | OriginalPaper | Buchkapitel

3D Numerical Simulations of Particle–Water Interaction Using a Virtual Approach

verfasst von : Varvara Roubtsova, Mohamed Chekired

Erschienen in: Advances in Hydroinformatics

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Three-dimensional flow of a Newtonian fluid through porous media consisting of multisized perfectly spherical beads is numerically simulated. Porous media are virtually and randomly generated, in accordance with the particle size distribution. All the physical features of the porous media are fully represented and considered, in order to closely mimic the heterogeneity of these media. Simulations show that the smallest particles strongly affect the streamline shape by imposing small pores and small throats, and also by providing the shortest paths. The third dimension has a particular effect, which is to allow the streamlines to follow the path of least resistance, where the least amount of energy is required to produce the motion of a fluid particle. Once the three-dimensional images have been produced, the proposed model provides a three-dimensional representation of the streamlines and their velocity. Unfortunately, the results currently generated do not agree well with those proposed in the literature. Consequently, there is a pressing need to verify these results by conducting more numerical tests.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hazen, A. (1892). Some physical properties of sands and gravels, with special reference to their use in filtration. In 24th Annual Report, Massachusetts State Board of Health, Publication. Doc. No. 34 (pp. 539–556). Hazen, A. (1892). Some physical properties of sands and gravels, with special reference to their use in filtration. In 24th Annual Report, Massachusetts State Board of Health, Publication. Doc. No. 34 (pp. 539–556).
2.
Zurück zum Zitat Carman, P. C. (1956). Flow of gases through porous media. London: Butterworths Scientific Publications.MATH Carman, P. C. (1956). Flow of gases through porous media. London: Butterworths Scientific Publications.MATH
3.
Zurück zum Zitat Shepherd, R. G. (1989). Correlations of permeability and grain size. Ground Water, 27(5), 633–638.CrossRef Shepherd, R. G. (1989). Correlations of permeability and grain size. Ground Water, 27(5), 633–638.CrossRef
4.
Zurück zum Zitat Alyamani, M. S., & Sen, Z. (1993). Determination of hydraulic conductivity from grain size distribution curves. Ground Water, 31, 551–555.CrossRef Alyamani, M. S., & Sen, Z. (1993). Determination of hydraulic conductivity from grain size distribution curves. Ground Water, 31, 551–555.CrossRef
5.
Zurück zum Zitat Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. New York: Wiley. Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. New York: Wiley.
6.
Zurück zum Zitat Kenney, T. C., Lau, D., & Ofoegbu, G. I. (1984). Permeability of compacted granular materials. Canadian Geotechnical Journal, 21, 726–729.CrossRef Kenney, T. C., Lau, D., & Ofoegbu, G. I. (1984). Permeability of compacted granular materials. Canadian Geotechnical Journal, 21, 726–729.CrossRef
7.
Zurück zum Zitat Chapuis, R. P. (2004). Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Canadian Geotechnical Journal, 41, 787–795.CrossRef Chapuis, R. P. (2004). Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Canadian Geotechnical Journal, 41, 787–795.CrossRef
8.
Zurück zum Zitat Kresic, N. (1998). Quantitative solutions in hydrogeology and groundwater modeling. Florida: Lewis Publishers. Kresic, N. (1998). Quantitative solutions in hydrogeology and groundwater modeling. Florida: Lewis Publishers.
9.
Zurück zum Zitat Carman, P. C. (1937) Fluid flow through granular bed. Transactions of the Institution of Chemical Engineers, London, 15, 150–166. Carman, P. C. (1937) Fluid flow through granular bed. Transactions of the Institution of Chemical Engineers, London, 15, 150–166.
10.
Zurück zum Zitat Slichter, C. S. (1898). Theoretical investigation of the motion of ground waters. In 19th Annual Report. U.S. Geology Survey, USA. Slichter, C. S. (1898). Theoretical investigation of the motion of ground waters. In 19th Annual Report. U.S. Geology Survey, USA.
11.
Zurück zum Zitat Vukovic, M., & Soro, A. (1992). Determination of hydraulic conductivity of porous media from Grain-Size composition. USA: Water Resources Publications. Vukovic, M., & Soro, A. (1992). Determination of hydraulic conductivity of porous media from Grain-Size composition. USA: Water Resources Publications.
12.
Zurück zum Zitat Odong, J. (2007). Evaluation of the empirical formulae for determination of hydraulic conductivity based on grain size analysis. Journal of American Science, 3, 54–60. Odong, J. (2007). Evaluation of the empirical formulae for determination of hydraulic conductivity based on grain size analysis. Journal of American Science, 3, 54–60.
13.
Zurück zum Zitat Zinovik, D., & Poulikakos, D. (2012). On the permeability of fractal tube bundles. Transport in Porous Media, 94, 747–757.CrossRef Zinovik, D., & Poulikakos, D. (2012). On the permeability of fractal tube bundles. Transport in Porous Media, 94, 747–757.CrossRef
14.
Zurück zum Zitat Andrey, P. J., Cathy, H., Friday, E., Samuel, A. Mc D, & Philip, J. W. (2013). A novel architecture for pore network modelling with applications to permeability of porous media. Journal of Hydrology, 486, 246–258.CrossRef Andrey, P. J., Cathy, H., Friday, E., Samuel, A. Mc D, & Philip, J. W. (2013). A novel architecture for pore network modelling with applications to permeability of porous media. Journal of Hydrology, 486, 246–258.CrossRef
15.
Zurück zum Zitat Chapuis, R. P., & Aubertin, M. (2003). On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils. Canadian Geotechnical Journal, 40(3), 616–628.CrossRef Chapuis, R. P., & Aubertin, M. (2003). On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils. Canadian Geotechnical Journal, 40(3), 616–628.CrossRef
16.
Zurück zum Zitat Dunn, R. J., & Mitchell, J. K. (1984). Fluid Conductivity Testing of Fine-Grained Soil. Journal of Geotechnical Engineering, 110(11), 1648–1665.CrossRef Dunn, R. J., & Mitchell, J. K. (1984). Fluid Conductivity Testing of Fine-Grained Soil. Journal of Geotechnical Engineering, 110(11), 1648–1665.CrossRef
17.
Zurück zum Zitat Strizhov, A. A., & Khalilov, V. S. (1994). Structure of wall flow through a channel with a granular bed. Fluid Dynamics, 29(6), 745–748.CrossRefMATH Strizhov, A. A., & Khalilov, V. S. (1994). Structure of wall flow through a channel with a granular bed. Fluid Dynamics, 29(6), 745–748.CrossRefMATH
18.
Zurück zum Zitat Daniel, D. E. & Trautwein, S. J. (1986). Field permeability test for earthen liner. In Proceedings Institute 86, ASCE Specialty Conference on Use of In-situ Tests in Geotechnical Engineering. Virginia Polytechnic Institute and State University Blacksburg, New York (pp. 146–160). Daniel, D. E. & Trautwein, S. J. (1986). Field permeability test for earthen liner. In Proceedings Institute 86, ASCE Specialty Conference on Use of In-situ Tests in Geotechnical Engineering. Virginia Polytechnic Institute and State University Blacksburg, New York (pp. 146–160).
19.
Zurück zum Zitat Cundall, P., & Strack, O. (1979). A Discrete numerical model for granular assemblies. Geotechnique, 29(1), 47–65.CrossRef Cundall, P., & Strack, O. (1979). A Discrete numerical model for granular assemblies. Geotechnique, 29(1), 47–65.CrossRef
20.
Zurück zum Zitat Roubtsova, V., Chekired, M., Morin B., & Karray, M. (2011). 3D virtual laboratory for geotechnical applications: An other perspective. In Particles 2011, II International Conference on Particle-based Methods Fundamentals and Applications, Barcelona, Spain, October 26–28, 2011. Roubtsova, V., Chekired, M., Morin B., & Karray, M. (2011). 3D virtual laboratory for geotechnical applications: An other perspective. In Particles 2011, II International Conference on Particle-based Methods Fundamentals and Applications, Barcelona, Spain, October 26–28, 2011.
21.
Zurück zum Zitat Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. The Physics of Fluids, 8, 2182–2189.CrossRefMATH Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. The Physics of Fluids, 8, 2182–2189.CrossRefMATH
22.
Zurück zum Zitat Fortin, M., Peyret, R., & Temam, R. (1971). Résolution numériques des équations de Navier-Stokes pour un fluide incompressible. Journal de Mécanique, 10(3), 357–390.MathSciNetMATH Fortin, M., Peyret, R., & Temam, R. (1971). Résolution numériques des équations de Navier-Stokes pour un fluide incompressible. Journal de Mécanique, 10(3), 357–390.MathSciNetMATH
23.
Zurück zum Zitat Belotserkovsky, O. M. (1994). Numerical modeling in the mechanics of continuous media. Moscow: Physico-matematic literature. (in Russian). Belotserkovsky, O. M. (1994). Numerical modeling in the mechanics of continuous media. Moscow: Physico-matematic literature. (in Russian).
24.
Zurück zum Zitat Chekired, M. & Roubtsova, V. (2013) Virtual reality 3D interaction of fluid-particle simulations. In V International Conference on Coupled Problems in Science and Engineering, Ibiza, Spain, June 17–19. Chekired, M. & Roubtsova, V. (2013) Virtual reality 3D interaction of fluid-particle simulations. In V International Conference on Coupled Problems in Science and Engineering, Ibiza, Spain, June 17–19.
25.
Zurück zum Zitat Kalthoff, W., Schawarzer, S., & Herrmann, H. J. (1997). Algorithm for the simulation of particle suspension with inertia effects. Physical Review E, 56, 2234–2242. Kalthoff, W., Schawarzer, S., & Herrmann, H. J. (1997). Algorithm for the simulation of particle suspension with inertia effects. Physical Review E, 56, 2234–2242.
26.
Zurück zum Zitat Roubtsova, V., Chekired, M., Ethier, Y., & Avendano, F. (2012). SIMSOLS: A 3D virtual laboratory for geotechnical applications. In ICSE6 Paris, August 27–31. Roubtsova, V., Chekired, M., Ethier, Y., & Avendano, F. (2012). SIMSOLS: A 3D virtual laboratory for geotechnical applications. In ICSE6 Paris, August 27–31.
27.
Zurück zum Zitat Bear, J. (1972) Dynamics of fluids in porous media. New York: American Elsevier Publishing Company, Inc. Bear, J. (1972) Dynamics of fluids in porous media. New York: American Elsevier Publishing Company, Inc.
28.
Zurück zum Zitat Baveye, P., & Sposito, G. (1984). The operational significance of the continuum hypothesis in the theory of water movement through soils and aquifers. Water Resources Research, 20(5), 521–530.CrossRef Baveye, P., & Sposito, G. (1984). The operational significance of the continuum hypothesis in the theory of water movement through soils and aquifers. Water Resources Research, 20(5), 521–530.CrossRef
29.
Zurück zum Zitat Mayer, A. S., & Miller, C. T. (1992). The influence of porous medium characteristics and measurement scale on pore-scale distributions of residual nonaqueous-phase liquids. Journal of Contaminant Hydrology, 11, 189–213.CrossRef Mayer, A. S., & Miller, C. T. (1992). The influence of porous medium characteristics and measurement scale on pore-scale distributions of residual nonaqueous-phase liquids. Journal of Contaminant Hydrology, 11, 189–213.CrossRef
30.
Zurück zum Zitat Zhang, D., Zhang, R., Chen, S., & Soll, W. E. (2000). Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV. Geophysical Reseach Letters, 27(8), 1195–1198.CrossRef Zhang, D., Zhang, R., Chen, S., & Soll, W. E. (2000). Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV. Geophysical Reseach Letters, 27(8), 1195–1198.CrossRef
31.
Zurück zum Zitat Razavi, M. R., Muhunthan, B., & Al Hattamleh, O. (2007). Representative elementary volume analysis of sands using x-ray computed tomography. Geotechnical Testing Journal, 30(3), 212–219.CrossRef Razavi, M. R., Muhunthan, B., & Al Hattamleh, O. (2007). Representative elementary volume analysis of sands using x-ray computed tomography. Geotechnical Testing Journal, 30(3), 212–219.CrossRef
32.
Zurück zum Zitat Nordahl, K., & Ringrose, P. S. (2008). Identifying the representative elementary volume for permeability in heterolithic deposits using numerical rock models. Mathematical Geosciences, 40, 753–771.CrossRef Nordahl, K., & Ringrose, P. S. (2008). Identifying the representative elementary volume for permeability in heterolithic deposits using numerical rock models. Mathematical Geosciences, 40, 753–771.CrossRef
33.
Zurück zum Zitat Salama, A., & Van Geel, P. J. (2008). Flow and solute transport in saturated porous media: 1. The continuum hypothesis. Journal of Porous Media, 11(4), 403–413.CrossRef Salama, A., & Van Geel, P. J. (2008). Flow and solute transport in saturated porous media: 1. The continuum hypothesis. Journal of Porous Media, 11(4), 403–413.CrossRef
34.
Zurück zum Zitat Li, J. H., Zhang, L. M., Wang, Y., & Fredlund, D. G. (2009). Permeability tensor and representative elementary volume of saturated cracked soil. Canadian Geotechnical Journal, 46, 928–942.CrossRef Li, J. H., Zhang, L. M., Wang, Y., & Fredlund, D. G. (2009). Permeability tensor and representative elementary volume of saturated cracked soil. Canadian Geotechnical Journal, 46, 928–942.CrossRef
35.
Zurück zum Zitat Scheidegger, A. E. (1963). The Physics of Flow Through Porous Media. Toronto: University of Toronto Press. Scheidegger, A. E. (1963). The Physics of Flow Through Porous Media. Toronto: University of Toronto Press.
Metadaten
Titel
3D Numerical Simulations of Particle–Water Interaction Using a Virtual Approach
verfasst von
Varvara Roubtsova
Mohamed Chekired
Copyright-Jahr
2016
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-615-7_39