Skip to main content

2016 | OriginalPaper | Buchkapitel

Calibration of an Air Entrainment Model for CFD Spillway Applications

verfasst von : Daniel Valero, Rafael García-Bartual

Erschienen in: Advances in Hydroinformatics

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Air entrained has become one of the main variables in the study of large spillways performance since it can help avoiding cavitation. Moreover, high rates of air concentration produce significant bulking of the flow as well as a water–solid friction reduction, generating flow acceleration and increasing maximum velocities at the inlet of the energy dissipation structure. Air entrained also affects turbulence inside the flow producing different energy dissipation rates. Aerated spillways physical models are affected by scale effects, with Weber and Reynolds numbers being usually too low to adequately reproduce observed flows. Alternatively, simulation of air–water flows can be carried out by means of Computational Fluid Dynamics techniques in 1:1 scale. However, 3D numerical simulations of spillway flows are time expensive and air–water interfaces need fine resolution meshes which would require extensive computing. Thus, the use of a subgrid scale in air entrainment models can be useful to predict the inception point and the air concentration profile of the flow along the spillway. Computational techniques can handle a more accurate momentum distribution over the spillway sections with affordable costs. In this research, FLOW-3D® routine for turbulent air entrainment is used, coupled with variable density evaluation. VOF and κ-ε RNG turbulence model are also employed. Over 200 spillway flow simulations have been carried out to obtain optimal values of the air-entrainment model parameters, which can be used in future spillway simulations. The calibration of the model is carried out employing prototype data. Interesting conclusions are obtained concerning air entrainment model performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Balachandar, S., & Eaton, J. K. (2010). Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 42, 111–133. Balachandar, S., & Eaton, J. K. (2010). Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 42, 111–133.
2.
Zurück zum Zitat Bombardelli, F. A. (2012). Computational multi-phase fluid dynamics to address flows past hydraulic structures. In 4th IAHR International Symposium on Hydraulic Structures, February 9–11, 2012, Porto, Portugal. ISBN: 978-989-8509-01-7. Bombardelli, F. A. (2012). Computational multi-phase fluid dynamics to address flows past hydraulic structures. In 4th IAHR International Symposium on Hydraulic Structures, February 9–11, 2012, Porto, Portugal. ISBN: 978-989-8509-01-7.
3.
Zurück zum Zitat Bombardelli, F. A., Meireles, I., & Matos, J. (2011). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263–288.CrossRef Bombardelli, F. A., Meireles, I., & Matos, J. (2011). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263–288.CrossRef
4.
Zurück zum Zitat Borges, J. E., Pereira, N. H., Matos, J., & Frizell, K. H. (2010). Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air–water flows. Experiments in Fluids, 48(1), 17–31.CrossRef Borges, J. E., Pereira, N. H., Matos, J., & Frizell, K. H. (2010). Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air–water flows. Experiments in Fluids, 48(1), 17–31.CrossRef
5.
Zurück zum Zitat Brethour, J. M., & Hirt, C. W. (2009). Drift model for two-component flows. FSI-09-TN83Rev. Flow Science, Inc. Brethour, J. M., & Hirt, C. W. (2009). Drift model for two-component flows. FSI-09-TN83Rev. Flow Science, Inc.
6.
Zurück zum Zitat Bung, D. B. (2011). Developing flow in skimming flow regime on embankment stepped spillways. Journal of Hydraulic Research, 49(5), 639–648.CrossRef Bung, D. B. (2011). Developing flow in skimming flow regime on embankment stepped spillways. Journal of Hydraulic Research, 49(5), 639–648.CrossRef
7.
Zurück zum Zitat Bung, D. B. (2013). Non-intrusive detection of air–water surface roughness in self-aerated chute flows. Journal of Hydraulic Research, 51(3), 322–329.CrossRef Bung, D. B. (2013). Non-intrusive detection of air–water surface roughness in self-aerated chute flows. Journal of Hydraulic Research, 51(3), 322–329.CrossRef
8.
Zurück zum Zitat Bureau, O. R. (1977). Design of small dams. Washington, DC: US Department of the Interior. Bureau, O. R. (1977). Design of small dams. Washington, DC: US Department of the Interior.
9.
Zurück zum Zitat Chanson, H. (1994). Drag reduction in open channel flow by aeration and suspended load. Journal of Hydraulic Research, 32(1), 87–101.CrossRef Chanson, H. (1994). Drag reduction in open channel flow by aeration and suspended load. Journal of Hydraulic Research, 32(1), 87–101.CrossRef
10.
Zurück zum Zitat Chanson, H. (1996). Air bubble entrainment in free-surface turbulent shear flows. London: Academic Press. Chanson, H. (1996). Air bubble entrainment in free-surface turbulent shear flows. London: Academic Press.
11.
Zurück zum Zitat Chanson, H. (2009). Turbulent air–water flows in hydraulic structures: dynamic similarity and scale effects. Environmental Fluid Mechanics, 9(2), 125–142.CrossRefMathSciNet Chanson, H. (2009). Turbulent air–water flows in hydraulic structures: dynamic similarity and scale effects. Environmental Fluid Mechanics, 9(2), 125–142.CrossRefMathSciNet
12.
Zurück zum Zitat Chanson, H. (2013). Hydraulics of aerated flows: Qui pro quo? Journal of Hydraulic Research, 51(3), 223–243.CrossRef Chanson, H. (2013). Hydraulics of aerated flows: Qui pro quo? Journal of Hydraulic Research, 51(3), 223–243.CrossRef
13.
Zurück zum Zitat Chanson, H., & Lubin, P. (2010). Discussion of “Verification and validation of a computational fluid dynamics (CFD) model for air entrainment at spillway aerators”. Canadian Journal of Civil Engineering, 37(1), 135–138.CrossRef Chanson, H., & Lubin, P. (2010). Discussion of “Verification and validation of a computational fluid dynamics (CFD) model for air entrainment at spillway aerators”. Canadian Journal of Civil Engineering, 37(1), 135–138.CrossRef
14.
Zurück zum Zitat Chanson, H., & Toombes, L. (2002). Air-water flows down stepped chutes: Turbulence and flow structure observations. International Journal of Multiphase Flow, 28(11), 1737–1761.CrossRefMATH Chanson, H., & Toombes, L. (2002). Air-water flows down stepped chutes: Turbulence and flow structure observations. International Journal of Multiphase Flow, 28(11), 1737–1761.CrossRefMATH
15.
Zurück zum Zitat Chen, J.-H., Wu, J.-S., & Faeth, G. M. (2000). Turbulence generation in homogeneous particle-laden flows. AIAA Journal, 38(4), 636–642.CrossRef Chen, J.-H., Wu, J.-S., & Faeth, G. M. (2000). Turbulence generation in homogeneous particle-laden flows. AIAA Journal, 38(4), 636–642.CrossRef
16.
Zurück zum Zitat Crowe, C. T. (2000). On models for turbulence modulation in fluid–particle flows. International Journal of Multiphase Flow, 26(5), 719–727.CrossRefMATH Crowe, C. T. (2000). On models for turbulence modulation in fluid–particle flows. International Journal of Multiphase Flow, 26(5), 719–727.CrossRefMATH
17.
Zurück zum Zitat Falvey, H. T. (1980). Air-water flows in hydraulic structures. USBR Engineering Monograph, No. 41, Denver, CO. Falvey, H. T. (1980). Air-water flows in hydraulic structures. USBR Engineering Monograph, No. 41, Denver, CO.
18.
Zurück zum Zitat Falvey, H. T. (1990). Cavitation in chutes and spillways. USBR Engineering Monograph, No. 42, Denver, CO. Falvey, H. T. (1990). Cavitation in chutes and spillways. USBR Engineering Monograph, No. 42, Denver, CO.
19.
Zurück zum Zitat Gore, R. A., & Crowe, C. T. (1989). Effect of particle size on modulating turbulent intensity. International Journal of Multiphase Flow, 15(2), 279–285.CrossRef Gore, R. A., & Crowe, C. T. (1989). Effect of particle size on modulating turbulent intensity. International Journal of Multiphase Flow, 15(2), 279–285.CrossRef
20.
Zurück zum Zitat Hager, W. H. (1991). Uniform aerated chute flow. Journal of Hydraulic Engineering, 117(4), 528–533.CrossRef Hager, W. H. (1991). Uniform aerated chute flow. Journal of Hydraulic Engineering, 117(4), 528–533.CrossRef
21.
Zurück zum Zitat Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293–306.CrossRefMathSciNet Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293–306.CrossRefMathSciNet
22.
Zurück zum Zitat Hirt, C. W. (2003). Modeling turbulent entrainment of air at a free surface. FSI-03-TN61-R. Flow Science, Inc. Hirt, C. W. (2003). Modeling turbulent entrainment of air at a free surface. FSI-03-TN61-R. Flow Science, Inc.
23.
Zurück zum Zitat Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225.CrossRefMATH Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225.CrossRefMATH
24.
Zurück zum Zitat Hirt, C. W., & Sicilian, J. M. (1985). A porosity technique for the definition of obstacles in rectangular cell meshes. In Proceedings of International Conference on Numerical Ship Hydrodynamics (19 p.). Washington, DC: National Academy of Science. Hirt, C. W., & Sicilian, J. M. (1985). A porosity technique for the definition of obstacles in rectangular cell meshes. In Proceedings of International Conference on Numerical Ship Hydrodynamics (19 p.). Washington, DC: National Academy of Science.
25.
Zurück zum Zitat Jha, S. K., & Bombardelli, F. A. (2010). Toward two‐phase flow modeling of nondilute sediment transport in open channels. Journal of Geophysical Research: Earth Surface, 115(F3), 2003–2012. Jha, S. K., & Bombardelli, F. A. (2010). Toward two‐phase flow modeling of nondilute sediment transport in open channels. Journal of Geophysical Research: Earth Surface, 115(F3), 2003–2012.
26.
Zurück zum Zitat Kramer, K., & Hager, W. H. (2005). Air transport in chute flows. International Journal of Multiphase Flow, 31(10), 1181–1197.CrossRefMATH Kramer, K., & Hager, W. H. (2005). Air transport in chute flows. International Journal of Multiphase Flow, 31(10), 1181–1197.CrossRefMATH
27.
Zurück zum Zitat Ma, J., Oberai, A. A., Drew, D. A., Lahey, R. T., & Hyman, M. C. (2011). A comprehensive sub-grid air entrainment model for RaNS modeling of free-surface bubbly flows. The Journal of Computational Multiphase Flows, 3(1), 41–56.CrossRefMathSciNet Ma, J., Oberai, A. A., Drew, D. A., Lahey, R. T., & Hyman, M. C. (2011). A comprehensive sub-grid air entrainment model for RaNS modeling of free-surface bubbly flows. The Journal of Computational Multiphase Flows, 3(1), 41–56.CrossRefMathSciNet
28.
Zurück zum Zitat Ma, J., Oberai, A. A., Lahey, R. T., Jr, & Drew, D. A. (2011). Modeling air entrainment and transport in a hydraulic jump using two-fluid RANS and DES turbulence models. Heat and Mass Transfer, 47(8), 911–919.CrossRef Ma, J., Oberai, A. A., Lahey, R. T., Jr, & Drew, D. A. (2011). Modeling air entrainment and transport in a hydraulic jump using two-fluid RANS and DES turbulence models. Heat and Mass Transfer, 47(8), 911–919.CrossRef
29.
Zurück zum Zitat Madavan, N. K., Deutsch, S., & Merkle, C. L. (1984). Reduction of turbulent skin friction by microbubbles. Physics of Fluids, 27(2), 356–363.CrossRef Madavan, N. K., Deutsch, S., & Merkle, C. L. (1984). Reduction of turbulent skin friction by microbubbles. Physics of Fluids, 27(2), 356–363.CrossRef
30.
Zurück zum Zitat Meireles, I. C., Bombardelli, F. A., & Matos, J. (2014). Air entrainment onset in skimming flows on steep stepped spillways: An analysis. Journal of Hydraulic Research, 52(3), 375–385.CrossRef Meireles, I. C., Bombardelli, F. A., & Matos, J. (2014). Air entrainment onset in skimming flows on steep stepped spillways: An analysis. Journal of Hydraulic Research, 52(3), 375–385.CrossRef
31.
Zurück zum Zitat Oertel, M., & Bung, D. B. (2012). Initial stage of two-dimensional dam-break waves: Laboratory versus VOF. Journal of Hydraulic Research, 50(1), 89–97.CrossRef Oertel, M., & Bung, D. B. (2012). Initial stage of two-dimensional dam-break waves: Laboratory versus VOF. Journal of Hydraulic Research, 50(1), 89–97.CrossRef
32.
Zurück zum Zitat Pfister, M. (2008). Bubbles and waves description of self-aerated spillway flow. Journal of Hydraulic Engineering, 46(3), 420–423.CrossRef Pfister, M. (2008). Bubbles and waves description of self-aerated spillway flow. Journal of Hydraulic Engineering, 46(3), 420–423.CrossRef
33.
Zurück zum Zitat Pfister, M., & Hager, W. H. (2010). Chute aerators. I: Air transport characteristics. Journal of Hydraulic Engineering, 136(6), 352–359.CrossRef Pfister, M., & Hager, W. H. (2010). Chute aerators. I: Air transport characteristics. Journal of Hydraulic Engineering, 136(6), 352–359.CrossRef
34.
Zurück zum Zitat Pope, S. B. (2000). Turbulent flows. Cambridge: Cambridge University Press. Pope, S. B. (2000). Turbulent flows. Cambridge: Cambridge University Press.
35.
Zurück zum Zitat Versteeg, H.K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Harlow: Pearson Education. Versteeg, H.K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Harlow: Pearson Education.
36.
Zurück zum Zitat Vischer, D., Hager, W. H., & Cischer, D. (1998). Dam hydraulics. Chichester, UK: Wiley. Vischer, D., Hager, W. H., & Cischer, D. (1998). Dam hydraulics. Chichester, UK: Wiley.
37.
Zurück zum Zitat Wilcox, D. C. (1998). Turbulence modeling for CFD. La Canada, CA: DCW industries. Wilcox, D. C. (1998). Turbulence modeling for CFD. La Canada, CA: DCW industries.
38.
Zurück zum Zitat Wilhelms, S. C., & Gulliver, J. S. (2005). Bubbles and waves description of self-aerated spillway flow. Journal of Hydraulic Research, 43(5), 522–531.CrossRef Wilhelms, S. C., & Gulliver, J. S. (2005). Bubbles and waves description of self-aerated spillway flow. Journal of Hydraulic Research, 43(5), 522–531.CrossRef
39.
Zurück zum Zitat Wood, I. R. (1991). Air entrainment in free-surface flows. In IAHR Hydraulic design manual No. 4, hydraulic design considerations. Rotterdam, The Netherlands: Balkema Publications. Wood, I. R. (1991). Air entrainment in free-surface flows. In IAHR Hydraulic design manual No. 4, hydraulic design considerations. Rotterdam, The Netherlands: Balkema Publications.
40.
Zurück zum Zitat Wood, I. R., Ackers, P., & Loveless, J. (1983). General method for critical point on spillways. Journal of Hydraulic Engineering, 109(2), 308–312.CrossRef Wood, I. R., Ackers, P., & Loveless, J. (1983). General method for critical point on spillways. Journal of Hydraulic Engineering, 109(2), 308–312.CrossRef
41.
Zurück zum Zitat Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4, 1510.CrossRefMathSciNetMATH Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4, 1510.CrossRefMathSciNetMATH
Metadaten
Titel
Calibration of an Air Entrainment Model for CFD Spillway Applications
verfasst von
Daniel Valero
Rafael García-Bartual
Copyright-Jahr
2016
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-615-7_38