Skip to main content
Top

2022 | OriginalPaper | Chapter

9. 3D Printing Incorporated with Supply Chain Management and Associated Waste Production

Authors : Gurcharan Singh Bhalla, Harmanpreet Singh, Puneet Bawa

Published in: Sustainability for 3D Printing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since the development of the additive manufacturing (AM) process also prominently known as 3D printing or rapid prototyping there is an exponential increase in its applications under various domains. 3D printing when incorporated with supply chain management can be really helpful to streamline the processes along with waste management. Various factors can be kept in mind while implementing 3D printing along with supply chain management. The waste that is generated from different manufacturing processes when they were being turned into final products can also be reduced to a great extent or can be eliminated if production is done by 3D printing. Rapid Prototyping (RP) is a layer-by-layer manufacturing process. Likewise, Computer-assisted design (CAD) can specifically be used to produce such tri-dimensional physical models. This manufacturing method gives engineers and designers an absolute ability to print the tri-dimensions layout of their concepts and models. Processes for RP includes a quick and cheap alternative for prototyping functional models in contrast with the traditional component production. The benefit of constructing a component layer-by-layer is that even the complex shapes can be easily made which though were the almost impossible to manufacture by machining process. RP can construct complex structures within structures, internal sections, and very thin-walled features equally quickly to construct a simple cube. AM technology emerges as an easy sell in the market to create complex shapes with the material needed and to enhance the design and simulation of complex structures. This results in disruption of technologies that have a global impact on the supply chain and the logistics of the business. The essence of this technology is the potential to deliver goods closer to client standards worldwide while maintaining the automated delivery of those products in real-time. It has major advantages over the management of the supply chain by reducing product, transport, and warehouse capital investment, and by encouraging stores to evaluate a global change in supply chain management. The primary goal is to acquire knowledge about the use and role of 3D printers in the management of the supply chain and to explore the consequences of AM for the management of the supply chain. The key goal of the research is to gain information on the use and role of 3D printing in supply chain management and to study AM’s effect on supply chain administration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ashley, S.: Rapid prototyping systems. Mech. Eng. 113(4), 34 (1991) Ashley, S.: Rapid prototyping systems. Mech. Eng. 113(4), 34 (1991)
2.
go back to reference Cooper, K.: Rapid Prototyping Technology. Marcel Dekker (2001) Cooper, K.: Rapid Prototyping Technology. Marcel Dekker (2001)
3.
go back to reference Kochan, A.: Rapid growth for rapid prototyping. Assembly Autom. 17(3), 215–217 (1997) Kochan, A.: Rapid growth for rapid prototyping. Assembly Autom. 17(3), 215–217 (1997)
4.
go back to reference Noorani, R.: Rapid Prototyping Principles and Applications. John Wiley & Sons (2006) Noorani, R.: Rapid Prototyping Principles and Applications. John Wiley & Sons (2006)
5.
go back to reference Sandhu, K., Singh, G., Singh, S., Kumar, R., Prakash, C., Ramakrishna, S., Królczyk, G., Pruncu, C.I.: Surface characteristics of machined polystyrene with 3D printed thermoplastic tool. Materials 13(12), 2729 (2020)CrossRef Sandhu, K., Singh, G., Singh, S., Kumar, R., Prakash, C., Ramakrishna, S., Królczyk, G., Pruncu, C.I.: Surface characteristics of machined polystyrene with 3D printed thermoplastic tool. Materials 13(12), 2729 (2020)CrossRef
6.
go back to reference Wohlers, T.: Wohlers Report 2011. Wholers Associates (2011) Wohlers, T.: Wohlers Report 2011. Wholers Associates (2011)
7.
go back to reference Guo, N., Leu, M.C.: Additive manufacturing: technology, applications and research needs. Front. Mech. Eng. 215–243 (2013) Guo, N., Leu, M.C.: Additive manufacturing: technology, applications and research needs. Front. Mech. Eng. 215–243 (2013)
8.
go back to reference Wohlers, T.: Wohlers Report 2009. Wholers Associates (2009) Wohlers, T.: Wohlers Report 2009. Wholers Associates (2009)
9.
go back to reference Sandhu, K., Singh, S., Prakash, C.: Analysis of angular shrinkage of fused filament fabricated poly-lactic-acid prints and its relationship with other process parameters. In: IOP Conference Series: Materials Science and Engineering, vol. 561, no. 1, p. 012058. IOP Publishing (2019) Sandhu, K., Singh, S., Prakash, C.: Analysis of angular shrinkage of fused filament fabricated poly-lactic-acid prints and its relationship with other process parameters. In: IOP Conference Series: Materials Science and Engineering, vol. 561, no. 1, p. 012058. IOP Publishing (2019)
10.
go back to reference Phamand, D.T., Ji, C.: Design for stereolithography. In: Proceedings of the Institution of Mechanical Engineers, vol. 214, no. 5, pp. 635–640 (2000) Phamand, D.T., Ji, C.: Design for stereolithography. In: Proceedings of the Institution of Mechanical Engineers, vol. 214, no. 5, pp. 635–640 (2000)
12.
go back to reference Kim, G.D., Oh, Y.T.: A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proc. Inst. Mech. Eng. 222(2), 201–215 (2008)CrossRef Kim, G.D., Oh, Y.T.: A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proc. Inst. Mech. Eng. 222(2), 201–215 (2008)CrossRef
14.
go back to reference Morvan, S., Hochsmann, R., Sakamoto, M.: ProMetal RCT(TM) process for fabrication of complex sand molds and sand cores. Rapid Prototyping 11(2), 1–7 (2005) Morvan, S., Hochsmann, R., Sakamoto, M.: ProMetal RCT(TM) process for fabrication of complex sand molds and sand cores. Rapid Prototyping 11(2), 1–7 (2005)
18.
go back to reference Lipke, D.W., Zhang, Y., Liu, Y., Church, B.C., Sandhage, K.H.: Near net-shape/net-dimension ZrC/W-based composites with complex geometries via rapid prototyping and displacive compensation of porosity. J. Eur. Ceram. Soc. 30(11), 2265–2277 (2010)CrossRef Lipke, D.W., Zhang, Y., Liu, Y., Church, B.C., Sandhage, K.H.: Near net-shape/net-dimension ZrC/W-based composites with complex geometries via rapid prototyping and displacive compensation of porosity. J. Eur. Ceram. Soc. 30(11), 2265–2277 (2010)CrossRef
19.
go back to reference Kruth, J.P., Mercelis, P., van Vaerenbergh, J., Froyen, L., Rombouts, M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping J. 11(1), 26–36 (2005)CrossRef Kruth, J.P., Mercelis, P., van Vaerenbergh, J., Froyen, L., Rombouts, M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping J. 11(1), 26–36 (2005)CrossRef
20.
go back to reference Hwa-Hsing, T., Ming-Lu, C., Hsiao-Chuan, Y.: Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts. J. Eur. Ceram. Soc. 31(8), 1383–1388 (2011)CrossRef Hwa-Hsing, T., Ming-Lu, C., Hsiao-Chuan, Y.: Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts. J. Eur. Ceram. Soc. 31(8), 1383–1388 (2011)CrossRef
21.
go back to reference Slavko, D., Matic, K.: Selective laser sintering of composite materials technologies. In: Annals of DAAAM and Proceedings, p. 1527 (2010) Slavko, D., Matic, K.: Selective laser sintering of composite materials technologies. In: Annals of DAAAM and Proceedings, p. 1527 (2010)
22.
go back to reference Murr, L., Gaytan, S., Ramirez, D., et al.: Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28(1), 1–14 (2012)CrossRef Murr, L., Gaytan, S., Ramirez, D., et al.: Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28(1), 1–14 (2012)CrossRef
23.
go back to reference Semetay, C.: Laser engineered net shaping (LENS) modeling using welding simulation concepts. Pro Quest Dissertations and Theses, Lehigh University (2007) Semetay, C.: Laser engineered net shaping (LENS) modeling using welding simulation concepts. Pro Quest Dissertations and Theses, Lehigh University (2007)
26.
go back to reference Liao, Y.S., Li, H.C., Chiu, Y.Y.: Study of laminated object manufacturing with separately applied heating and pressing. Int. J. Adv. Manuf. Technol. 27(7–8), 703–707 (2006)CrossRef Liao, Y.S., Li, H.C., Chiu, Y.Y.: Study of laminated object manufacturing with separately applied heating and pressing. Int. J. Adv. Manuf. Technol. 27(7–8), 703–707 (2006)CrossRef
27.
go back to reference Vaupotic, B., Brezocnik, M., Balic, J.: Use of PolyJettechnology in manufacture of new product. J. Achievements Mater. Manuf. Eng. 18(1–2), 319–322 (2006) Vaupotic, B., Brezocnik, M., Balic, J.: Use of PolyJettechnology in manufacture of new product. J. Achievements Mater. Manuf. Eng. 18(1–2), 319–322 (2006)
28.
go back to reference Singh, R.: Process capability study of polyjet printing for plastic components. J. Mech. Sci. Technol. 25(4), 1011–1015 (2011)CrossRef Singh, R.: Process capability study of polyjet printing for plastic components. J. Mech. Sci. Technol. 25(4), 1011–1015 (2011)CrossRef
30.
go back to reference Petrovic, V., Vicente, J., Gonzalez, H., et al.: Additive layered manufacturing: sectors of industrial application shown through case studies. Int. J. Prod. Res. 49(4), 1061–1079 (2011)CrossRef Petrovic, V., Vicente, J., Gonzalez, H., et al.: Additive layered manufacturing: sectors of industrial application shown through case studies. Int. J. Prod. Res. 49(4), 1061–1079 (2011)CrossRef
32.
go back to reference Grimm, T.: User’s Guide to Rapid Prototyping, Society of Manufacturing Engineers (2004) Grimm, T.: User’s Guide to Rapid Prototyping, Society of Manufacturing Engineers (2004)
33.
go back to reference Bletzinger, K.U., Ramm, E.: Structural optimization and form finding of light weight structures. Comput. Struct. 79(22–25), 2053–2062 (2001)CrossRef Bletzinger, K.U., Ramm, E.: Structural optimization and form finding of light weight structures. Comput. Struct. 79(22–25), 2053–2062 (2001)CrossRef
35.
go back to reference Mentzer, J.T., DeWitt, W., Keebler, J.S., Min, S., Nix, N.W., Smith, C.D., Zacharia, Z.G.: J. Bus. Logistics 22(2), 1–25 (2001) Mentzer, J.T., DeWitt, W., Keebler, J.S., Min, S., Nix, N.W., Smith, C.D., Zacharia, Z.G.: J. Bus. Logistics 22(2), 1–25 (2001)
36.
37.
go back to reference Ha, U., Lee, L., Padmanabhan, V., Whang, S.: Manage. Sci. 43(4), 546–558 (1997) Ha, U., Lee, L., Padmanabhan, V., Whang, S.: Manage. Sci. 43(4), 546–558 (1997)
39.
go back to reference Stevens, G.C.: Int. J. Phys. Distrib. Mater. Manage. 19(8), 3–8 (1989) Stevens, G.C.: Int. J. Phys. Distrib. Mater. Manage. 19(8), 3–8 (1989)
40.
go back to reference Gunasekaran, A., Patel, C., Tirtiroglu, E.: Int. J. Oper. Prod. Manag. 211(2), 71–87 (2001) Gunasekaran, A., Patel, C., Tirtiroglu, E.: Int. J. Oper. Prod. Manag. 211(2), 71–87 (2001)
41.
42.
go back to reference Govindan, K., Soleimani, H., Kannan, D.: Eur. J. Oper. Res. 240(3), 603–626 (2015)CrossRef Govindan, K., Soleimani, H., Kannan, D.: Eur. J. Oper. Res. 240(3), 603–626 (2015)CrossRef
43.
go back to reference Scholten, K., Schilder, S.: Supply chain management. Int. J. 20(4), 471–484 (2015) Scholten, K., Schilder, S.: Supply chain management. Int. J. 20(4), 471–484 (2015)
45.
46.
47.
go back to reference Cooper, M.C., Lambert, D.M., Pagh, J.D.: Int. J. Logistics Manage. 8(1), 1–14 (1997)CrossRef Cooper, M.C., Lambert, D.M., Pagh, J.D.: Int. J. Logistics Manage. 8(1), 1–14 (1997)CrossRef
48.
49.
go back to reference Croxton, K.L., Garcia-Dastugue, S.J., Lambert, D.M., Rogers, D.S.: Int. J. Logistics Manage. 12(2), 13–36 (2001)CrossRef Croxton, K.L., Garcia-Dastugue, S.J., Lambert, D.M., Rogers, D.S.: Int. J. Logistics Manage. 12(2), 13–36 (2001)CrossRef
50.
go back to reference Srivastava, S.K.: Int. J. Manage. Rev. 9(1), 53–80 (2007) Srivastava, S.K.: Int. J. Manage. Rev. 9(1), 53–80 (2007)
51.
go back to reference Carter, C.R., Rogers, D.S.: Int. J. Physical Distrib. Logistics Manage. 38(5), 360–387 (2008)CrossRef Carter, C.R., Rogers, D.S.: Int. J. Physical Distrib. Logistics Manage. 38(5), 360–387 (2008)CrossRef
52.
53.
54.
go back to reference Teresa Teresa, M., Nickel, S., Saldanha-Da-Gama, F.: Eur. J. Oper. Res. 196(2), 401–412 (2009) Teresa Teresa, M., Nickel, S., Saldanha-Da-Gama, F.: Eur. J. Oper. Res. 196(2), 401–412 (2009)
56.
go back to reference Keah, C.T., Lyman, S.B., Wisner, J.D.: Int. J. Operations Production Manage. 22(6), 614–631 (2002) Keah, C.T., Lyman, S.B., Wisner, J.D.: Int. J. Operations Production Manage. 22(6), 614–631 (2002)
57.
go back to reference Ivanov, D.: Structural Dynamics and Resilience in Supply Chain Risk Management, pp. 293–313. Springer, Cham (2018)CrossRef Ivanov, D.: Structural Dynamics and Resilience in Supply Chain Risk Management, pp. 293–313. Springer, Cham (2018)CrossRef
58.
go back to reference Magee, L., Scerri, A., Cahill, F.: Reframing social sustainability reporting: towards an engaged approach. Environ. Dev. Sustain. 225–243 (2013) Magee, L., Scerri, A., Cahill, F.: Reframing social sustainability reporting: towards an engaged approach. Environ. Dev. Sustain. 225–243 (2013)
59.
go back to reference Jiang, J., Stringer, J., Xu, X., Zheng, P.: A benchmarking part for evaluating and comparing support structures of additive manufacturing. In: 3rd International Conference on Progress in additive manufacturing, 196–202 (2018). https://doi.org/10.25341/D42G6H Jiang, J., Stringer, J., Xu, X., Zheng, P.: A benchmarking part for evaluating and comparing support structures of additive manufacturing. In: 3rd International Conference on Progress in additive manufacturing, 196–202 (2018). https://​doi.​org/​10.​25341/​D42G6H
61.
go back to reference Jiang, J., Xu, X., Stringer, J.: A new support strategy for reducing waste in additive manufacturing. In: The 48th International Conference on Computers and Industrial Engineering, Auckland (2018) Jiang, J., Xu, X., Stringer, J.: A new support strategy for reducing waste in additive manufacturing. In: The 48th International Conference on Computers and Industrial Engineering, Auckland (2018)
62.
go back to reference Jiang, J., Xu, X., Stringer, J.: Optimization of process planning for reducing material waste in extrusion based additive manufacturing. Rob. Comput. Integr. Manuf. 317–325 (2019) Jiang, J., Xu, X., Stringer, J.: Optimization of process planning for reducing material waste in extrusion based additive manufacturing. Rob. Comput. Integr. Manuf. 317–325 (2019)
63.
go back to reference Sandhu, K., Singh, J.P., Singh, S.: Some investigations on the tensile strength of additively manufactured polylactic acid components. In: Advances in Materials Processing, pp 221–230. Springer, Singapore (2020) Sandhu, K., Singh, J.P., Singh, S.: Some investigations on the tensile strength of additively manufactured polylactic acid components. In: Advances in Materials Processing, pp 221–230. Springer, Singapore (2020)
Metadata
Title
3D Printing Incorporated with Supply Chain Management and Associated Waste Production
Authors
Gurcharan Singh Bhalla
Harmanpreet Singh
Puneet Bawa
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-75235-4_9

Premium Partners