Skip to main content

2022 | OriginalPaper | Buchkapitel

9. 3D Printing Incorporated with Supply Chain Management and Associated Waste Production

verfasst von : Gurcharan Singh Bhalla, Harmanpreet Singh, Puneet Bawa

Erschienen in: Sustainability for 3D Printing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since the development of the additive manufacturing (AM) process also prominently known as 3D printing or rapid prototyping there is an exponential increase in its applications under various domains. 3D printing when incorporated with supply chain management can be really helpful to streamline the processes along with waste management. Various factors can be kept in mind while implementing 3D printing along with supply chain management. The waste that is generated from different manufacturing processes when they were being turned into final products can also be reduced to a great extent or can be eliminated if production is done by 3D printing. Rapid Prototyping (RP) is a layer-by-layer manufacturing process. Likewise, Computer-assisted design (CAD) can specifically be used to produce such tri-dimensional physical models. This manufacturing method gives engineers and designers an absolute ability to print the tri-dimensions layout of their concepts and models. Processes for RP includes a quick and cheap alternative for prototyping functional models in contrast with the traditional component production. The benefit of constructing a component layer-by-layer is that even the complex shapes can be easily made which though were the almost impossible to manufacture by machining process. RP can construct complex structures within structures, internal sections, and very thin-walled features equally quickly to construct a simple cube. AM technology emerges as an easy sell in the market to create complex shapes with the material needed and to enhance the design and simulation of complex structures. This results in disruption of technologies that have a global impact on the supply chain and the logistics of the business. The essence of this technology is the potential to deliver goods closer to client standards worldwide while maintaining the automated delivery of those products in real-time. It has major advantages over the management of the supply chain by reducing product, transport, and warehouse capital investment, and by encouraging stores to evaluate a global change in supply chain management. The primary goal is to acquire knowledge about the use and role of 3D printers in the management of the supply chain and to explore the consequences of AM for the management of the supply chain. The key goal of the research is to gain information on the use and role of 3D printing in supply chain management and to study AM’s effect on supply chain administration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ashley, S.: Rapid prototyping systems. Mech. Eng. 113(4), 34 (1991) Ashley, S.: Rapid prototyping systems. Mech. Eng. 113(4), 34 (1991)
2.
Zurück zum Zitat Cooper, K.: Rapid Prototyping Technology. Marcel Dekker (2001) Cooper, K.: Rapid Prototyping Technology. Marcel Dekker (2001)
3.
Zurück zum Zitat Kochan, A.: Rapid growth for rapid prototyping. Assembly Autom. 17(3), 215–217 (1997) Kochan, A.: Rapid growth for rapid prototyping. Assembly Autom. 17(3), 215–217 (1997)
4.
Zurück zum Zitat Noorani, R.: Rapid Prototyping Principles and Applications. John Wiley & Sons (2006) Noorani, R.: Rapid Prototyping Principles and Applications. John Wiley & Sons (2006)
5.
Zurück zum Zitat Sandhu, K., Singh, G., Singh, S., Kumar, R., Prakash, C., Ramakrishna, S., Królczyk, G., Pruncu, C.I.: Surface characteristics of machined polystyrene with 3D printed thermoplastic tool. Materials 13(12), 2729 (2020)CrossRef Sandhu, K., Singh, G., Singh, S., Kumar, R., Prakash, C., Ramakrishna, S., Królczyk, G., Pruncu, C.I.: Surface characteristics of machined polystyrene with 3D printed thermoplastic tool. Materials 13(12), 2729 (2020)CrossRef
6.
Zurück zum Zitat Wohlers, T.: Wohlers Report 2011. Wholers Associates (2011) Wohlers, T.: Wohlers Report 2011. Wholers Associates (2011)
7.
Zurück zum Zitat Guo, N., Leu, M.C.: Additive manufacturing: technology, applications and research needs. Front. Mech. Eng. 215–243 (2013) Guo, N., Leu, M.C.: Additive manufacturing: technology, applications and research needs. Front. Mech. Eng. 215–243 (2013)
8.
Zurück zum Zitat Wohlers, T.: Wohlers Report 2009. Wholers Associates (2009) Wohlers, T.: Wohlers Report 2009. Wholers Associates (2009)
9.
Zurück zum Zitat Sandhu, K., Singh, S., Prakash, C.: Analysis of angular shrinkage of fused filament fabricated poly-lactic-acid prints and its relationship with other process parameters. In: IOP Conference Series: Materials Science and Engineering, vol. 561, no. 1, p. 012058. IOP Publishing (2019) Sandhu, K., Singh, S., Prakash, C.: Analysis of angular shrinkage of fused filament fabricated poly-lactic-acid prints and its relationship with other process parameters. In: IOP Conference Series: Materials Science and Engineering, vol. 561, no. 1, p. 012058. IOP Publishing (2019)
10.
Zurück zum Zitat Phamand, D.T., Ji, C.: Design for stereolithography. In: Proceedings of the Institution of Mechanical Engineers, vol. 214, no. 5, pp. 635–640 (2000) Phamand, D.T., Ji, C.: Design for stereolithography. In: Proceedings of the Institution of Mechanical Engineers, vol. 214, no. 5, pp. 635–640 (2000)
12.
Zurück zum Zitat Kim, G.D., Oh, Y.T.: A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proc. Inst. Mech. Eng. 222(2), 201–215 (2008)CrossRef Kim, G.D., Oh, Y.T.: A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proc. Inst. Mech. Eng. 222(2), 201–215 (2008)CrossRef
14.
Zurück zum Zitat Morvan, S., Hochsmann, R., Sakamoto, M.: ProMetal RCT(TM) process for fabrication of complex sand molds and sand cores. Rapid Prototyping 11(2), 1–7 (2005) Morvan, S., Hochsmann, R., Sakamoto, M.: ProMetal RCT(TM) process for fabrication of complex sand molds and sand cores. Rapid Prototyping 11(2), 1–7 (2005)
18.
Zurück zum Zitat Lipke, D.W., Zhang, Y., Liu, Y., Church, B.C., Sandhage, K.H.: Near net-shape/net-dimension ZrC/W-based composites with complex geometries via rapid prototyping and displacive compensation of porosity. J. Eur. Ceram. Soc. 30(11), 2265–2277 (2010)CrossRef Lipke, D.W., Zhang, Y., Liu, Y., Church, B.C., Sandhage, K.H.: Near net-shape/net-dimension ZrC/W-based composites with complex geometries via rapid prototyping and displacive compensation of porosity. J. Eur. Ceram. Soc. 30(11), 2265–2277 (2010)CrossRef
19.
Zurück zum Zitat Kruth, J.P., Mercelis, P., van Vaerenbergh, J., Froyen, L., Rombouts, M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping J. 11(1), 26–36 (2005)CrossRef Kruth, J.P., Mercelis, P., van Vaerenbergh, J., Froyen, L., Rombouts, M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping J. 11(1), 26–36 (2005)CrossRef
20.
Zurück zum Zitat Hwa-Hsing, T., Ming-Lu, C., Hsiao-Chuan, Y.: Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts. J. Eur. Ceram. Soc. 31(8), 1383–1388 (2011)CrossRef Hwa-Hsing, T., Ming-Lu, C., Hsiao-Chuan, Y.: Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts. J. Eur. Ceram. Soc. 31(8), 1383–1388 (2011)CrossRef
21.
Zurück zum Zitat Slavko, D., Matic, K.: Selective laser sintering of composite materials technologies. In: Annals of DAAAM and Proceedings, p. 1527 (2010) Slavko, D., Matic, K.: Selective laser sintering of composite materials technologies. In: Annals of DAAAM and Proceedings, p. 1527 (2010)
22.
Zurück zum Zitat Murr, L., Gaytan, S., Ramirez, D., et al.: Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28(1), 1–14 (2012)CrossRef Murr, L., Gaytan, S., Ramirez, D., et al.: Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28(1), 1–14 (2012)CrossRef
23.
Zurück zum Zitat Semetay, C.: Laser engineered net shaping (LENS) modeling using welding simulation concepts. Pro Quest Dissertations and Theses, Lehigh University (2007) Semetay, C.: Laser engineered net shaping (LENS) modeling using welding simulation concepts. Pro Quest Dissertations and Theses, Lehigh University (2007)
26.
Zurück zum Zitat Liao, Y.S., Li, H.C., Chiu, Y.Y.: Study of laminated object manufacturing with separately applied heating and pressing. Int. J. Adv. Manuf. Technol. 27(7–8), 703–707 (2006)CrossRef Liao, Y.S., Li, H.C., Chiu, Y.Y.: Study of laminated object manufacturing with separately applied heating and pressing. Int. J. Adv. Manuf. Technol. 27(7–8), 703–707 (2006)CrossRef
27.
Zurück zum Zitat Vaupotic, B., Brezocnik, M., Balic, J.: Use of PolyJettechnology in manufacture of new product. J. Achievements Mater. Manuf. Eng. 18(1–2), 319–322 (2006) Vaupotic, B., Brezocnik, M., Balic, J.: Use of PolyJettechnology in manufacture of new product. J. Achievements Mater. Manuf. Eng. 18(1–2), 319–322 (2006)
28.
Zurück zum Zitat Singh, R.: Process capability study of polyjet printing for plastic components. J. Mech. Sci. Technol. 25(4), 1011–1015 (2011)CrossRef Singh, R.: Process capability study of polyjet printing for plastic components. J. Mech. Sci. Technol. 25(4), 1011–1015 (2011)CrossRef
30.
Zurück zum Zitat Petrovic, V., Vicente, J., Gonzalez, H., et al.: Additive layered manufacturing: sectors of industrial application shown through case studies. Int. J. Prod. Res. 49(4), 1061–1079 (2011)CrossRef Petrovic, V., Vicente, J., Gonzalez, H., et al.: Additive layered manufacturing: sectors of industrial application shown through case studies. Int. J. Prod. Res. 49(4), 1061–1079 (2011)CrossRef
32.
Zurück zum Zitat Grimm, T.: User’s Guide to Rapid Prototyping, Society of Manufacturing Engineers (2004) Grimm, T.: User’s Guide to Rapid Prototyping, Society of Manufacturing Engineers (2004)
33.
Zurück zum Zitat Bletzinger, K.U., Ramm, E.: Structural optimization and form finding of light weight structures. Comput. Struct. 79(22–25), 2053–2062 (2001)CrossRef Bletzinger, K.U., Ramm, E.: Structural optimization and form finding of light weight structures. Comput. Struct. 79(22–25), 2053–2062 (2001)CrossRef
35.
Zurück zum Zitat Mentzer, J.T., DeWitt, W., Keebler, J.S., Min, S., Nix, N.W., Smith, C.D., Zacharia, Z.G.: J. Bus. Logistics 22(2), 1–25 (2001) Mentzer, J.T., DeWitt, W., Keebler, J.S., Min, S., Nix, N.W., Smith, C.D., Zacharia, Z.G.: J. Bus. Logistics 22(2), 1–25 (2001)
36.
37.
Zurück zum Zitat Ha, U., Lee, L., Padmanabhan, V., Whang, S.: Manage. Sci. 43(4), 546–558 (1997) Ha, U., Lee, L., Padmanabhan, V., Whang, S.: Manage. Sci. 43(4), 546–558 (1997)
38.
39.
Zurück zum Zitat Stevens, G.C.: Int. J. Phys. Distrib. Mater. Manage. 19(8), 3–8 (1989) Stevens, G.C.: Int. J. Phys. Distrib. Mater. Manage. 19(8), 3–8 (1989)
40.
Zurück zum Zitat Gunasekaran, A., Patel, C., Tirtiroglu, E.: Int. J. Oper. Prod. Manag. 211(2), 71–87 (2001) Gunasekaran, A., Patel, C., Tirtiroglu, E.: Int. J. Oper. Prod. Manag. 211(2), 71–87 (2001)
41.
Zurück zum Zitat Sathish, T.: J. New Mater. Electrochem. Syst. 20(4), 161–167 (2017)CrossRef Sathish, T.: J. New Mater. Electrochem. Syst. 20(4), 161–167 (2017)CrossRef
42.
Zurück zum Zitat Govindan, K., Soleimani, H., Kannan, D.: Eur. J. Oper. Res. 240(3), 603–626 (2015)CrossRef Govindan, K., Soleimani, H., Kannan, D.: Eur. J. Oper. Res. 240(3), 603–626 (2015)CrossRef
43.
Zurück zum Zitat Scholten, K., Schilder, S.: Supply chain management. Int. J. 20(4), 471–484 (2015) Scholten, K., Schilder, S.: Supply chain management. Int. J. 20(4), 471–484 (2015)
45.
46.
Zurück zum Zitat Seuring, S., Müller, M.: J. Cleaner Prod. 16(15), 1699–1710 (2008)CrossRef Seuring, S., Müller, M.: J. Cleaner Prod. 16(15), 1699–1710 (2008)CrossRef
47.
Zurück zum Zitat Cooper, M.C., Lambert, D.M., Pagh, J.D.: Int. J. Logistics Manage. 8(1), 1–14 (1997)CrossRef Cooper, M.C., Lambert, D.M., Pagh, J.D.: Int. J. Logistics Manage. 8(1), 1–14 (1997)CrossRef
48.
Zurück zum Zitat Cooper, M.C., Ellram, L.M.: Int. J. Logistics Manage. 4(2), 13–24 (1993)CrossRef Cooper, M.C., Ellram, L.M.: Int. J. Logistics Manage. 4(2), 13–24 (1993)CrossRef
49.
Zurück zum Zitat Croxton, K.L., Garcia-Dastugue, S.J., Lambert, D.M., Rogers, D.S.: Int. J. Logistics Manage. 12(2), 13–36 (2001)CrossRef Croxton, K.L., Garcia-Dastugue, S.J., Lambert, D.M., Rogers, D.S.: Int. J. Logistics Manage. 12(2), 13–36 (2001)CrossRef
50.
Zurück zum Zitat Srivastava, S.K.: Int. J. Manage. Rev. 9(1), 53–80 (2007) Srivastava, S.K.: Int. J. Manage. Rev. 9(1), 53–80 (2007)
51.
Zurück zum Zitat Carter, C.R., Rogers, D.S.: Int. J. Physical Distrib. Logistics Manage. 38(5), 360–387 (2008)CrossRef Carter, C.R., Rogers, D.S.: Int. J. Physical Distrib. Logistics Manage. 38(5), 360–387 (2008)CrossRef
52.
53.
Zurück zum Zitat Keah Choon Tan: Eur. J. Purchasing Supply Manage. 7(1), 39–48 (2001)CrossRef Keah Choon Tan: Eur. J. Purchasing Supply Manage. 7(1), 39–48 (2001)CrossRef
54.
Zurück zum Zitat Teresa Teresa, M., Nickel, S., Saldanha-Da-Gama, F.: Eur. J. Oper. Res. 196(2), 401–412 (2009) Teresa Teresa, M., Nickel, S., Saldanha-Da-Gama, F.: Eur. J. Oper. Res. 196(2), 401–412 (2009)
56.
Zurück zum Zitat Keah, C.T., Lyman, S.B., Wisner, J.D.: Int. J. Operations Production Manage. 22(6), 614–631 (2002) Keah, C.T., Lyman, S.B., Wisner, J.D.: Int. J. Operations Production Manage. 22(6), 614–631 (2002)
57.
Zurück zum Zitat Ivanov, D.: Structural Dynamics and Resilience in Supply Chain Risk Management, pp. 293–313. Springer, Cham (2018)CrossRef Ivanov, D.: Structural Dynamics and Resilience in Supply Chain Risk Management, pp. 293–313. Springer, Cham (2018)CrossRef
58.
Zurück zum Zitat Magee, L., Scerri, A., Cahill, F.: Reframing social sustainability reporting: towards an engaged approach. Environ. Dev. Sustain. 225–243 (2013) Magee, L., Scerri, A., Cahill, F.: Reframing social sustainability reporting: towards an engaged approach. Environ. Dev. Sustain. 225–243 (2013)
59.
Zurück zum Zitat Jiang, J., Stringer, J., Xu, X., Zheng, P.: A benchmarking part for evaluating and comparing support structures of additive manufacturing. In: 3rd International Conference on Progress in additive manufacturing, 196–202 (2018). https://doi.org/10.25341/D42G6H Jiang, J., Stringer, J., Xu, X., Zheng, P.: A benchmarking part for evaluating and comparing support structures of additive manufacturing. In: 3rd International Conference on Progress in additive manufacturing, 196–202 (2018). https://​doi.​org/​10.​25341/​D42G6H
61.
Zurück zum Zitat Jiang, J., Xu, X., Stringer, J.: A new support strategy for reducing waste in additive manufacturing. In: The 48th International Conference on Computers and Industrial Engineering, Auckland (2018) Jiang, J., Xu, X., Stringer, J.: A new support strategy for reducing waste in additive manufacturing. In: The 48th International Conference on Computers and Industrial Engineering, Auckland (2018)
62.
Zurück zum Zitat Jiang, J., Xu, X., Stringer, J.: Optimization of process planning for reducing material waste in extrusion based additive manufacturing. Rob. Comput. Integr. Manuf. 317–325 (2019) Jiang, J., Xu, X., Stringer, J.: Optimization of process planning for reducing material waste in extrusion based additive manufacturing. Rob. Comput. Integr. Manuf. 317–325 (2019)
63.
Zurück zum Zitat Sandhu, K., Singh, J.P., Singh, S.: Some investigations on the tensile strength of additively manufactured polylactic acid components. In: Advances in Materials Processing, pp 221–230. Springer, Singapore (2020) Sandhu, K., Singh, J.P., Singh, S.: Some investigations on the tensile strength of additively manufactured polylactic acid components. In: Advances in Materials Processing, pp 221–230. Springer, Singapore (2020)
Metadaten
Titel
3D Printing Incorporated with Supply Chain Management and Associated Waste Production
verfasst von
Gurcharan Singh Bhalla
Harmanpreet Singh
Puneet Bawa
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-75235-4_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.