Skip to main content
Top

2018 | OriginalPaper | Chapter

16. 3D Printing of Pharmaceuticals

Authors : Muzna Sadia, Mohamed Albed Alhnan, Waqar Ahmed, Mark J. Jackson

Published in: Micro and Nanomanufacturing Volume II

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the new era of medicine, 3D printing technique in pharmaceutical manufacturing has already yielded success. For example, Aprecia®, an FDA-approved pharmaceutical company, has launched its first approved product which is not only unique because of a novel manufacturing process but also better than conventional compressed tablets. 3D printing is an inexpensive additive manufacturing technique that builds a 3D object by successive layering on top of each other in a 2D fashion. The layering of the object in process is controlled digitally in a computer-aided design (CAD). 3D printing of pharmaceuticals suits best for personalised therapy, not only in case of doses but dosage form as well. A personalised dosage form can be designed and printed in such a way that the drugs are combined in a single pill (polypill). This cannot only make the therapy and schedule convenient for patient but also increase adherence.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130CrossRef Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130CrossRef
2.
go back to reference Khaled SA et al (2015) 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release 217:308–314CrossRef Khaled SA et al (2015) 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release 217:308–314CrossRef
3.
go back to reference Garber AJ et al (2003) Efficacy of glyburide/metformin tablets compared with initial monotherapy in type 2 diabetes. J Clin Endocrinol Metab 88(8):3598–3604CrossRef Garber AJ et al (2003) Efficacy of glyburide/metformin tablets compared with initial monotherapy in type 2 diabetes. J Clin Endocrinol Metab 88(8):3598–3604CrossRef
4.
go back to reference Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785CrossRef Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785CrossRef
5.
go back to reference CSC Leading Edge Forum (2012) 3D printing and the future of manufacturing. FALL. 36. CSC Leading Edge Forum (2012) 3D printing and the future of manufacturing. FALL. 36.
6.
go back to reference Deckard CR (1989) Method and apparatus for producing parts by selective sintering. Google Patents. Deckard CR (1989) Method and apparatus for producing parts by selective sintering. Google Patents.
7.
go back to reference Crump SS (1992) Apparatus and method for creating three-dimensional objects. Google Patents. Crump SS (1992) Apparatus and method for creating three-dimensional objects. Google Patents.
8.
go back to reference Hull CW et al. (1994) Method and apparatus for production of high resolution three-dimensional objects by stereolithography. Google Patents. Hull CW et al. (1994) Method and apparatus for production of high resolution three-dimensional objects by stereolithography. Google Patents.
9.
go back to reference Verma A, Rai R (2013) Energy efficient modeling and optimization of additive manufacturing processes. In solid freeform fabrication symposium, Austin, TX. Verma A, Rai R (2013) Energy efficient modeling and optimization of additive manufacturing processes. In solid freeform fabrication symposium, Austin, TX.
10.
go back to reference Leong KF et al (2001) Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique. Proc Inst Mech Eng H 215(2):191–201CrossRef Leong KF et al (2001) Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique. Proc Inst Mech Eng H 215(2):191–201CrossRef
11.
go back to reference Jacob J (2014) et al. Rapid disperse dosage form containing levetiracetam. Google Patents. Jacob J (2014) et al. Rapid disperse dosage form containing levetiracetam. Google Patents.
12.
go back to reference Katstra WE et al (2000) Oral dosage forms fabricated by three dimensional printing. J Control Release 66(1):1–9CrossRef Katstra WE et al (2000) Oral dosage forms fabricated by three dimensional printing. J Control Release 66(1):1–9CrossRef
13.
go back to reference Rowe CW et al (2000) Multimechanism oral dosage forms fabricated by three dimensional printing. J Control Release 66(1):11–17CrossRef Rowe CW et al (2000) Multimechanism oral dosage forms fabricated by three dimensional printing. J Control Release 66(1):11–17CrossRef
14.
go back to reference Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9:4CrossRef Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9:4CrossRef
15.
go back to reference Khaled SA et al (2014) Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm 461(1–2):105–111CrossRef Khaled SA et al (2014) Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm 461(1–2):105–111CrossRef
16.
go back to reference Skowyra J, Pietrzak K, Alhnan MA (2015) Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci 68:11–17CrossRef Skowyra J, Pietrzak K, Alhnan MA (2015) Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci 68:11–17CrossRef
17.
go back to reference Pietrzak K, Isreb A, Alhnan MA (2015) A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm 96:380–387CrossRef Pietrzak K, Isreb A, Alhnan MA (2015) A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm 96:380–387CrossRef
18.
go back to reference Melocchi A et al (2015) 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J Drug Deliv Sci Technol 30(Part B):360–367CrossRef Melocchi A et al (2015) 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J Drug Deliv Sci Technol 30(Part B):360–367CrossRef
19.
go back to reference Wang J et al (2016) Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm 503(1–2):207–212CrossRef Wang J et al (2016) Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm 503(1–2):207–212CrossRef
20.
go back to reference Wang C-C et al (2006) Development of near zero-order release dosage forms using three-dimensional printing (3-DP™) technology. Drug Dev Ind Pharm 32(3):367–376CrossRef Wang C-C et al (2006) Development of near zero-order release dosage forms using three-dimensional printing (3-DP™) technology. Drug Dev Ind Pharm 32(3):367–376CrossRef
21.
go back to reference Huang W et al (2007) Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique. Int J Pharm 339(1–2):33–38CrossRef Huang W et al (2007) Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique. Int J Pharm 339(1–2):33–38CrossRef
22.
go back to reference Yu DG et al (2009) Novel drug delivery devices for providing linear release profiles fabricated by 3DP. Int J Pharm 370(1–2):160–166CrossRef Yu DG et al (2009) Novel drug delivery devices for providing linear release profiles fabricated by 3DP. Int J Pharm 370(1–2):160–166CrossRef
23.
go back to reference Yu DG et al (2009) Novel oral fast-disintegrating drug delivery devices with predefined inner structure fabricated by three-dimensional printing. J Pharm Pharmacol 61(3):323–329CrossRef Yu DG et al (2009) Novel oral fast-disintegrating drug delivery devices with predefined inner structure fabricated by three-dimensional printing. J Pharm Pharmacol 61(3):323–329CrossRef
24.
go back to reference Wu BM et al (1996) Solid free-form fabrication of drug delivery devices. J Control Release 40(1–2):77–87CrossRef Wu BM et al (1996) Solid free-form fabrication of drug delivery devices. J Control Release 40(1–2):77–87CrossRef
25.
go back to reference Khaled SA et al (2015) 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm 494(2):643–650CrossRef Khaled SA et al (2015) 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm 494(2):643–650CrossRef
26.
go back to reference Goyanes A et al (2015) 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm 12(11):4077–4084CrossRef Goyanes A et al (2015) 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm 12(11):4077–4084CrossRef
27.
go back to reference Goyanes A et al (2015) Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm 496(2):414–420CrossRef Goyanes A et al (2015) Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm 496(2):414–420CrossRef
28.
go back to reference Goyanes A et al (2014) Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm 476(1–2):88–92CrossRef Goyanes A et al (2014) Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm 476(1–2):88–92CrossRef
29.
go back to reference Goyanes A et al (2015) 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm 89:157–162CrossRef Goyanes A et al (2015) 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm 89:157–162CrossRef
30.
go back to reference Goyanes A et al (2015) Effect of geometry on drug release from 3D printed tablets. Int J Pharm 494(2):657–663CrossRef Goyanes A et al (2015) Effect of geometry on drug release from 3D printed tablets. Int J Pharm 494(2):657–663CrossRef
31.
go back to reference Water JJ et al (2015) Three-dimensional printing of drug-eluting implants: preparation of an antimicrobial polylactide feedstock material. J Pharm Sci 104(3):1099–1107CrossRef Water JJ et al (2015) Three-dimensional printing of drug-eluting implants: preparation of an antimicrobial polylactide feedstock material. J Pharm Sci 104(3):1099–1107CrossRef
32.
go back to reference Weisman JA et al (2015) Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications. Int J Nanomedicine 10:357–370 Weisman JA et al (2015) Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications. Int J Nanomedicine 10:357–370
33.
go back to reference Sun Y, Soh S (2015) Printing tablets with fully customizable release profiles for personalized medicine. Adv Mater 27(47):7847–7853CrossRef Sun Y, Soh S (2015) Printing tablets with fully customizable release profiles for personalized medicine. Adv Mater 27(47):7847–7853CrossRef
34.
go back to reference Alhijjaj M, Belton P, Qi S (2016) An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Eur J Pharm Biopharm 108:111–125CrossRef Alhijjaj M, Belton P, Qi S (2016) An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Eur J Pharm Biopharm 108:111–125CrossRef
35.
go back to reference Okwuosa TC et al (2016) A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharm Res 33(11):2704–2712CrossRef Okwuosa TC et al (2016) A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharm Res 33(11):2704–2712CrossRef
36.
go back to reference Okwuosa TC et al (2017) Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-Centred therapy. Pharm Res 34(2):427–437CrossRef Okwuosa TC et al (2017) Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-Centred therapy. Pharm Res 34(2):427–437CrossRef
37.
go back to reference Sadia M et al (2016) Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm 513(1–2):659–668CrossRef Sadia M et al (2016) Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm 513(1–2):659–668CrossRef
38.
go back to reference Zhang J et al (2017) Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm 519(1–2):186–197CrossRef Zhang J et al (2017) Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm 519(1–2):186–197CrossRef
39.
go back to reference Goyanes A et al (2017) Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm 527(1–2):21–30CrossRef Goyanes A et al (2017) Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm 527(1–2):21–30CrossRef
Metadata
Title
3D Printing of Pharmaceuticals
Authors
Muzna Sadia
Mohamed Albed Alhnan
Waqar Ahmed
Mark J. Jackson
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-67132-1_16