Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Aligned Nanowire Growth

Authors : V. Cientanni, W. I. Milne, M. T. Cole

Published in: Micro and Nanomanufacturing Volume II

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With many thousands of different varieties to date, the nanowire (NW) library continues to grow at pace. With the continued and hastened maturity of nanotechnology, significant advances in materials science have allowed for the rational synthesis of a myriad of NW types of unique electronic and optical properties, allowing for the realisation of a wealth of novel devices, whose use is touted to become increasingly central in a number of emerging technologies. Nanowires, structures defined as having diameters between 1 and 100 nm, provide length scales at which a variety of inherent and unique physical effects come to the fore [1], phenomena which are often size suppressed in their bulk counterparts [2–4]. It is these size-dependent effects that have underpinned the growing interest in the growth and fabrication, at ever more commercial scales, of nanoscale structures. Nevertheless, many of the intrinsic properties of such NWs become largely smeared and often entirely lost when they adopt disordered ensembles. Conversely, ordered and aligned NWs have been shown to retain many such properties, alongside proffering various new properties that manifest on the micro- and even macroscale that would hitherto not occur in their disordered counterparts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hornyak GL (2009) Fundamentals of nanotechnology. Taylor & Francis Group, Boca Raton, FL Hornyak GL (2009) Fundamentals of nanotechnology. Taylor & Francis Group, Boca Raton, FL
2.
go back to reference Nalwa HS (2000) Handbook of nanostructured materials and nanotechnology. Academic Press, New York, NY Nalwa HS (2000) Handbook of nanostructured materials and nanotechnology. Academic Press, New York, NY
3.
go back to reference Alivisatos P, Barbara PF, Castleman AW, Chang J, Dixon DA, Klein ML, McLendon GL, Miller JS, Ratner MA, Rossky PJ, Stupp SI, Thompson ME (1998) From molecules to materials: current trends and future directions. Adv Mater 10(16):39CrossRef Alivisatos P, Barbara PF, Castleman AW, Chang J, Dixon DA, Klein ML, McLendon GL, Miller JS, Ratner MA, Rossky PJ, Stupp SI, Thompson ME (1998) From molecules to materials: current trends and future directions. Adv Mater 10(16):39CrossRef
4.
go back to reference Shalaev VM, Moskovits M (1999) Nanostructured materials: clusters, composites, and thin films. American Chemical Society, Washington, DC Shalaev VM, Moskovits M (1999) Nanostructured materials: clusters, composites, and thin films. American Chemical Society, Washington, DC
5.
go back to reference Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 2011(4):17. Dovepress Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 2011(4):17. Dovepress
6.
go back to reference Suhr J et al (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4(2):134–137CrossRef Suhr J et al (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4(2):134–137CrossRef
7.
go back to reference Moore GE (1998) Cramming more components onto integrated circuits. Proc IEEE 86(1):4 Moore GE (1998) Cramming more components onto integrated circuits. Proc IEEE 86(1):4
8.
go back to reference Ng HT et al (2004) Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett 4(7):1247–1252CrossRef Ng HT et al (2004) Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett 4(7):1247–1252CrossRef
9.
go back to reference Huang MH et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899CrossRef Huang MH et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899CrossRef
10.
go back to reference Thelander C et al (2006) Nanowire-based one-dimensional electronics. Mater Today 9(10):28–35CrossRef Thelander C et al (2006) Nanowire-based one-dimensional electronics. Mater Today 9(10):28–35CrossRef
11.
go back to reference Law M et al (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459CrossRef Law M et al (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459CrossRef
12.
go back to reference Sun XW, Wang JX (2008) Fast switching electrochromic display using a viologen-modified Zno nanowire array electrode. Nano Lett 8(7):1884–1889CrossRef Sun XW, Wang JX (2008) Fast switching electrochromic display using a viologen-modified Zno nanowire array electrode. Nano Lett 8(7):1884–1889CrossRef
13.
go back to reference Patolsky F et al (2004) Electrical detection of single viruses. Proc Natl Acad Sci U S A 101(39):14017–14022CrossRef Patolsky F et al (2004) Electrical detection of single viruses. Proc Natl Acad Sci U S A 101(39):14017–14022CrossRef
14.
go back to reference Xia Y et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389CrossRef Xia Y et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389CrossRef
15.
go back to reference Wang ZL (2000) Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater 12(17):1295–1298CrossRef Wang ZL (2000) Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater 12(17):1295–1298CrossRef
16.
go back to reference De Volder MFL et al (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539CrossRef De Volder MFL et al (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539CrossRef
17.
go back to reference Schmidt V et al (2009) Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv Mater 21(25–26):2681–2702CrossRef Schmidt V et al (2009) Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv Mater 21(25–26):2681–2702CrossRef
18.
go back to reference Cole MT et al (2014) Ultra-broadband polarisers based on metastable free-standing aligned carbon nanotube membranes. Adv Opt Mater 2(10):929–937CrossRef Cole MT et al (2014) Ultra-broadband polarisers based on metastable free-standing aligned carbon nanotube membranes. Adv Opt Mater 2(10):929–937CrossRef
19.
go back to reference Zhang Q et al (2016) In situ fabrication and investigation of nanostructures and nanodevices with a microscope. Chem Soc Rev 45(9):2694–2713CrossRef Zhang Q et al (2016) In situ fabrication and investigation of nanostructures and nanodevices with a microscope. Chem Soc Rev 45(9):2694–2713CrossRef
20.
go back to reference Ghoshal T et al (2014) Fabrication of ordered, large scale, horizontally-aligned Si nanowire arrays based on an in situ hard mask block copolymer approach. Adv Mater 26(8):1207–1216CrossRef Ghoshal T et al (2014) Fabrication of ordered, large scale, horizontally-aligned Si nanowire arrays based on an in situ hard mask block copolymer approach. Adv Mater 26(8):1207–1216CrossRef
21.
go back to reference Wagner RS, Ellis WC (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–90CrossRef Wagner RS, Ellis WC (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–90CrossRef
22.
go back to reference Ho T-W, Hong FC-N (2012) A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process. Appl Surf Sci 258(20):7989–7996CrossRef Ho T-W, Hong FC-N (2012) A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process. Appl Surf Sci 258(20):7989–7996CrossRef
23.
go back to reference Hochbaum AI et al (2005) Controlled growth of Si nanowire arrays for device integration. Nano Lett 5(3):457–460CrossRef Hochbaum AI et al (2005) Controlled growth of Si nanowire arrays for device integration. Nano Lett 5(3):457–460CrossRef
24.
go back to reference Wacaser BA et al (2009) Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires. Nano Lett 9(9):3296–3301CrossRef Wacaser BA et al (2009) Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires. Nano Lett 9(9):3296–3301CrossRef
25.
go back to reference Zhang R-Q, Lifshitz Y, Lee S-T (2003) Oxide-assisted growth of semiconducting nanowires. Adv Mater 15(7–8):635–640CrossRef Zhang R-Q, Lifshitz Y, Lee S-T (2003) Oxide-assisted growth of semiconducting nanowires. Adv Mater 15(7–8):635–640CrossRef
26.
go back to reference Yan HF et al (2000) Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism. Chem Phys Lett 323(3–4):224–228CrossRef Yan HF et al (2000) Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism. Chem Phys Lett 323(3–4):224–228CrossRef
27.
go back to reference Wang Y et al (2006) Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat Nanotechnol 1(3):186–189CrossRef Wang Y et al (2006) Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat Nanotechnol 1(3):186–189CrossRef
28.
go back to reference Thongmee S et al (2009) Fabrication and magnetic properties of metallic nanowires via aao templates. J Magnetism Magn Mater 321(18):2712–2716CrossRef Thongmee S et al (2009) Fabrication and magnetic properties of metallic nanowires via aao templates. J Magnetism Magn Mater 321(18):2712–2716CrossRef
29.
go back to reference Cantu-Valle J et al (2015) Mapping the magnetic and crystal structure in cobalt nanowires. J Appl Phys 118(2):024302CrossRef Cantu-Valle J et al (2015) Mapping the magnetic and crystal structure in cobalt nanowires. J Appl Phys 118(2):024302CrossRef
30.
go back to reference Cui F et al (2015) Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Lett 15(11):7610–7615CrossRef Cui F et al (2015) Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Lett 15(11):7610–7615CrossRef
31.
go back to reference Haehnel V et al (2010) Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes. Acta Mater 58(7):2330–2337CrossRef Haehnel V et al (2010) Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes. Acta Mater 58(7):2330–2337CrossRef
32.
go back to reference Kim J et al (2016) Organic devices based on nickel nanowires transparent electrode. Sci Rep 6:19813CrossRef Kim J et al (2016) Organic devices based on nickel nanowires transparent electrode. Sci Rep 6:19813CrossRef
33.
go back to reference Zach MP, Ng KH, Penner RM (2000) Molybdenum nanowires by electrodeposition. Science 290(5499):2120–2123CrossRef Zach MP, Ng KH, Penner RM (2000) Molybdenum nanowires by electrodeposition. Science 290(5499):2120–2123CrossRef
34.
go back to reference Lee JW et al (2010) Single crystalline aluminum nanowires with ideal resistivity. Scr Mater 63(10):1009–1012CrossRef Lee JW et al (2010) Single crystalline aluminum nanowires with ideal resistivity. Scr Mater 63(10):1009–1012CrossRef
35.
go back to reference Dou R, Derby B (2008) The growth and mechanical properties of gold nanowires. MRS Online Proceedings Library Archive. 1086: pp 1086–U08-01 (6 pages) Dou R, Derby B (2008) The growth and mechanical properties of gold nanowires. MRS Online Proceedings Library Archive. 1086: pp 1086–U08-01 (6 pages)
36.
go back to reference Cao Y et al (2006) A technique for controlling the alignment of silver nanowires with an electric field. Nanotechnology 17(9):2378CrossRef Cao Y et al (2006) A technique for controlling the alignment of silver nanowires with an electric field. Nanotechnology 17(9):2378CrossRef
37.
go back to reference Chen YJ et al (2007) Controlled growth of zinc nanowires. Mater Lett 61(1):144–147CrossRef Chen YJ et al (2007) Controlled growth of zinc nanowires. Mater Lett 61(1):144–147CrossRef
38.
go back to reference Djenizian T et al (2008) Electrochemical fabrication of tin nanowires: a short review. C R Chim 11(9):995–1003CrossRef Djenizian T et al (2008) Electrochemical fabrication of tin nanowires: a short review. C R Chim 11(9):995–1003CrossRef
39.
go back to reference Yanson AI, Yanson IK, van Ruitenbeek JM (1999) Observation of shell structure in sodium nanowires. Nature 400(6740):144–146CrossRef Yanson AI, Yanson IK, van Ruitenbeek JM (1999) Observation of shell structure in sodium nanowires. Nature 400(6740):144–146CrossRef
40.
go back to reference Li W et al (2007) Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption. J Am Chem Soc 129(21):6710–6711CrossRef Li W et al (2007) Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption. J Am Chem Soc 129(21):6710–6711CrossRef
41.
go back to reference Thongmee S et al (2009) Unique nanostructures in nico alloy nanowires. Acta Mater 57(8):2482–2487CrossRef Thongmee S et al (2009) Unique nanostructures in nico alloy nanowires. Acta Mater 57(8):2482–2487CrossRef
42.
go back to reference Hou H, Hamilton RF (2015) Free-standing niti alloy nanowires fabricated by nanoskiving. Nanoscale 7(32):13373–13378CrossRef Hou H, Hamilton RF (2015) Free-standing niti alloy nanowires fabricated by nanoskiving. Nanoscale 7(32):13373–13378CrossRef
43.
go back to reference Kumar S, Saini D (2013) Large-scale synthesis of Au–Ni alloy nanowires using electrochemical deposition. Appl Nanosci 3(2):101–107CrossRef Kumar S, Saini D (2013) Large-scale synthesis of Au–Ni alloy nanowires using electrochemical deposition. Appl Nanosci 3(2):101–107CrossRef
44.
go back to reference Wang CZ et al (2002) Structure and magnetic property of Ni-Cu alloy nanowires electrodeposited into the pores of anodic alumina membranes. J Phys D Appl Phys 35(8):738CrossRef Wang CZ et al (2002) Structure and magnetic property of Ni-Cu alloy nanowires electrodeposited into the pores of anodic alumina membranes. J Phys D Appl Phys 35(8):738CrossRef
45.
go back to reference Liao Y et al (2016) Composition-tunable ptcu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction. J Phys Chem C 120(19):10476–10484CrossRef Liao Y et al (2016) Composition-tunable ptcu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction. J Phys Chem C 120(19):10476–10484CrossRef
46.
go back to reference Kornienko N et al (2015) Solution phase synthesis of indium gallium phosphide alloy nanowires. ACS Nano 9(4):3951–3960CrossRef Kornienko N et al (2015) Solution phase synthesis of indium gallium phosphide alloy nanowires. ACS Nano 9(4):3951–3960CrossRef
47.
go back to reference Wang X et al (2016) Preparation and characterization of Y-Fe alloy nanowires by template-assisted electrodeposition from aqueous solution. J Nanopart Res 18(3):1–12CrossRef Wang X et al (2016) Preparation and characterization of Y-Fe alloy nanowires by template-assisted electrodeposition from aqueous solution. J Nanopart Res 18(3):1–12CrossRef
48.
go back to reference Dawson K, Riordan AO (2011) Towards nanowire (bio) sensors. J Phys Conf Series 307(1):012004CrossRef Dawson K, Riordan AO (2011) Towards nanowire (bio) sensors. J Phys Conf Series 307(1):012004CrossRef
49.
go back to reference Zhang Y et al (2014) New gold nanostructures for sensor applications: a review. Materials 7(7):5169CrossRef Zhang Y et al (2014) New gold nanostructures for sensor applications: a review. Materials 7(7):5169CrossRef
50.
go back to reference Chi S, Farias SL, Cammarata RC (2012) Synthesis of vertically aligned gold nanowire-ferromagnetic metal matrix composites. ECS Trans 41(35):119–122CrossRef Chi S, Farias SL, Cammarata RC (2012) Synthesis of vertically aligned gold nanowire-ferromagnetic metal matrix composites. ECS Trans 41(35):119–122CrossRef
51.
go back to reference He J et al (2013) Forest of gold nanowires: a new type of nanocrystal growth. ACS Nano 7(3):2733–2740CrossRef He J et al (2013) Forest of gold nanowires: a new type of nanocrystal growth. ACS Nano 7(3):2733–2740CrossRef
52.
go back to reference Kline TR et al (2006) Template-grown metal nanowires. Inorg Chem 45(19):7555–7565CrossRef Kline TR et al (2006) Template-grown metal nanowires. Inorg Chem 45(19):7555–7565CrossRef
53.
go back to reference Liu J et al (2006) Electrochemical fabrication of single-crystalline and polycrystalline au nanowires: the influence of deposition parameters. Nanotechnology 17(8):1922CrossRef Liu J et al (2006) Electrochemical fabrication of single-crystalline and polycrystalline au nanowires: the influence of deposition parameters. Nanotechnology 17(8):1922CrossRef
54.
go back to reference Reinhardt HM, Bücker K, Hampp NA (2015) Directed assembly of gold nanowires on silicon via reorganization and simultaneous fusion of randomly distributed gold nanoparticles. Opt Express 23(9):11965–11974CrossRef Reinhardt HM, Bücker K, Hampp NA (2015) Directed assembly of gold nanowires on silicon via reorganization and simultaneous fusion of randomly distributed gold nanoparticles. Opt Express 23(9):11965–11974CrossRef
55.
go back to reference Reynes O, Demoustier-Champagne S (2005) Template electrochemical growth of polypyrrole and gold-polypyrrole-gold nanowire arrays. J Electrochem Soc 152(9):D130–D135CrossRef Reynes O, Demoustier-Champagne S (2005) Template electrochemical growth of polypyrrole and gold-polypyrrole-gold nanowire arrays. J Electrochem Soc 152(9):D130–D135CrossRef
56.
go back to reference Shi S et al (2011) Fabrication of periodic metal nanowires with microscale mold by nanoimprint lithography. ACS Appl Mater Interfaces 3(11):4174–4179CrossRef Shi S et al (2011) Fabrication of periodic metal nanowires with microscale mold by nanoimprint lithography. ACS Appl Mater Interfaces 3(11):4174–4179CrossRef
57.
go back to reference Zheng L, Li S, Burke PJ (2004) Self-assembled gold nanowires from nanoparticles: an electronic route towards DNA nanosensors. Proc. SPIE 5515:117–124 Zheng L, Li S, Burke PJ (2004) Self-assembled gold nanowires from nanoparticles: an electronic route towards DNA nanosensors. Proc. SPIE 5515:117–124
58.
go back to reference Venkatesh R et al (2015) Directed assembly of ultrathin gold nanowires over large area by dielectrophoresis. Langmuir 31(33):9246–9252CrossRef Venkatesh R et al (2015) Directed assembly of ultrathin gold nanowires over large area by dielectrophoresis. Langmuir 31(33):9246–9252CrossRef
59.
go back to reference Zhang M et al (2013) Controllable growth of gold nanowires and nanoactuators via high-frequency Ac electrodeposition. Electrochem Commun 27:133–136CrossRef Zhang M et al (2013) Controllable growth of gold nanowires and nanoactuators via high-frequency Ac electrodeposition. Electrochem Commun 27:133–136CrossRef
60.
go back to reference Lu L et al (2012) Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improvement of photovoltaic performance. Nanoscale Res Lett 7(1):1–8CrossRef Lu L et al (2012) Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improvement of photovoltaic performance. Nanoscale Res Lett 7(1):1–8CrossRef
61.
go back to reference Yang R et al (2007) Silver nanowires prepared by modified AAO template method. Mater Lett 61(3):900–903CrossRef Yang R et al (2007) Silver nanowires prepared by modified AAO template method. Mater Lett 61(3):900–903CrossRef
62.
go back to reference Sun Y et al (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14(11):4736–4745CrossRef Sun Y et al (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14(11):4736–4745CrossRef
63.
go back to reference Sun Y et al (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2(2):165–168CrossRef Sun Y et al (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2(2):165–168CrossRef
64.
go back to reference Sun B et al (2009) Single-crystal silver nanowires: preparation and surface-enhanced raman scattering (sers) property. Mater Lett 63(29):2570–2573CrossRef Sun B et al (2009) Single-crystal silver nanowires: preparation and surface-enhanced raman scattering (sers) property. Mater Lett 63(29):2570–2573CrossRef
65.
go back to reference Mohammad A et al (2014) Optical characteristics of vertically aligned arrays of branched silver nanowires. 14th IEEE international conference on nanotechnology, pp 563–566 Mohammad A et al (2014) Optical characteristics of vertically aligned arrays of branched silver nanowires. 14th IEEE international conference on nanotechnology, pp 563–566
66.
go back to reference Malandrino G, Finocchiaro ST, Fragala IL (2004) Silver nanowires by a sonoself-reduction template process. J Mater Chem 14(18):2726–2728CrossRef Malandrino G, Finocchiaro ST, Fragala IL (2004) Silver nanowires by a sonoself-reduction template process. J Mater Chem 14(18):2726–2728CrossRef
67.
go back to reference Kazeminezhad I et al (2007) Templated electrodeposition of silver nanowires in a nanoporous polycarbonate membrane from a nonaqueous ionic liquid electrolyte. Appl Phys A 86(3):373–375CrossRef Kazeminezhad I et al (2007) Templated electrodeposition of silver nanowires in a nanoporous polycarbonate membrane from a nonaqueous ionic liquid electrolyte. Appl Phys A 86(3):373–375CrossRef
68.
go back to reference Han Y-H (2008) High density silver nanowire arrays using self-ordered anodic aluminum oxide (AAO) membrane. J Korean Ceramic Soc 45(4):191–195CrossRef Han Y-H (2008) High density silver nanowire arrays using self-ordered anodic aluminum oxide (AAO) membrane. J Korean Ceramic Soc 45(4):191–195CrossRef
69.
go back to reference Chun-Nuan Y et al (2004) Growth mechanism of vertically aligned Ag(TCNQ) nanowires. Chin Phys Lett 21(9):1787CrossRef Chun-Nuan Y et al (2004) Growth mechanism of vertically aligned Ag(TCNQ) nanowires. Chin Phys Lett 21(9):1787CrossRef
70.
go back to reference Cao Y, He J, Sun J (2009) Fabrication of oriented arrays of porous gold microsheaths using aligned silver nanowires as sacrificial template. Mater Lett 63(1):148–150CrossRef Cao Y, He J, Sun J (2009) Fabrication of oriented arrays of porous gold microsheaths using aligned silver nanowires as sacrificial template. Mater Lett 63(1):148–150CrossRef
71.
go back to reference Yazawa M et al (1992) Effect of one monolayer of surface gold atoms on the epitaxial growth of inas nanowhiskers. Appl Phys Lett 61(17):2051–2053CrossRef Yazawa M et al (1992) Effect of one monolayer of surface gold atoms on the epitaxial growth of inas nanowhiskers. Appl Phys Lett 61(17):2051–2053CrossRef
72.
go back to reference Holmes JD et al (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287(5457):1471–1473CrossRef Holmes JD et al (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287(5457):1471–1473CrossRef
73.
go back to reference Nakata M et al (2015) Transfer-free synthesis of highly ordered ge nanowire arrays on glass substrates. Appl Phys Lett 107(13):133102CrossRef Nakata M et al (2015) Transfer-free synthesis of highly ordered ge nanowire arrays on glass substrates. Appl Phys Lett 107(13):133102CrossRef
74.
go back to reference Duan X et al (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816):66–69CrossRef Duan X et al (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816):66–69CrossRef
75.
go back to reference Lindberg C et al (2016) Silver as seed-particle material for gaas nanowires—dictating crystal phase and growth direction by substrate orientation. Nano Lett 16(4):2181–2188CrossRef Lindberg C et al (2016) Silver as seed-particle material for gaas nanowires—dictating crystal phase and growth direction by substrate orientation. Nano Lett 16(4):2181–2188CrossRef
76.
go back to reference Zhang G et al (2008) Growth and characterization of gap nanowires on Si substrate. J Appl Phys 103(1):014301CrossRef Zhang G et al (2008) Growth and characterization of gap nanowires on Si substrate. J Appl Phys 103(1):014301CrossRef
77.
go back to reference Zhang Y et al (2014) Self-catalyzed ternary core–shell gaasp nanowire arrays grown on patterned Si substrates by molecular beam epitaxy. Nano Lett 14(8):4542–4547CrossRef Zhang Y et al (2014) Self-catalyzed ternary core–shell gaasp nanowire arrays grown on patterned Si substrates by molecular beam epitaxy. Nano Lett 14(8):4542–4547CrossRef
78.
go back to reference Tateno K et al (2012) VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures. Nano Lett 12(6):2888–2893CrossRef Tateno K et al (2012) VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures. Nano Lett 12(6):2888–2893CrossRef
79.
go back to reference Kriegner D et al (2013) Structural investigation of gainp nanowires using X-ray diffraction. Thin Solid Films 543:100–105CrossRef Kriegner D et al (2013) Structural investigation of gainp nanowires using X-ray diffraction. Thin Solid Films 543:100–105CrossRef
80.
go back to reference Tateno K, Zhang G, Nakano H (2008) Growth of GaInAs/AlInAs heterostructure nanowires for long-wavelength photon emission. Nano Lett 8(11):3645–3650CrossRef Tateno K, Zhang G, Nakano H (2008) Growth of GaInAs/AlInAs heterostructure nanowires for long-wavelength photon emission. Nano Lett 8(11):3645–3650CrossRef
81.
go back to reference Shindo T et al (2011) GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating. Opt Express 19(3):1884–1891CrossRef Shindo T et al (2011) GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating. Opt Express 19(3):1884–1891CrossRef
82.
go back to reference Zhang Y, Xu H, Wang Q (2010) Ultrathin single crystal zns nanowires. Chem Commun 46(47):8941–8943CrossRef Zhang Y, Xu H, Wang Q (2010) Ultrathin single crystal zns nanowires. Chem Commun 46(47):8941–8943CrossRef
83.
go back to reference Zhang XT et al (2003) Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition. Appl Phys Lett 83(26):5533–5535CrossRef Zhang XT et al (2003) Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition. Appl Phys Lett 83(26):5533–5535CrossRef
84.
go back to reference Yan S et al (2011) Novel regrowth mechanism of CdS nanowire in hydrothermal synthesis. New J Chem 35(2):299–302CrossRef Yan S et al (2011) Novel regrowth mechanism of CdS nanowire in hydrothermal synthesis. New J Chem 35(2):299–302CrossRef
86.
go back to reference Cho K-S et al (2005) Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 127(19):7140–7147CrossRef Cho K-S et al (2005) Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 127(19):7140–7147CrossRef
87.
go back to reference Finefrock SW et al (2014) Large-scale solution-phase production of Bi2te3 and PbTe nanowires using Te nanowire templates. Nanoscale 6(14):7872–7876CrossRef Finefrock SW et al (2014) Large-scale solution-phase production of Bi2te3 and PbTe nanowires using Te nanowire templates. Nanoscale 6(14):7872–7876CrossRef
88.
go back to reference Zettler JK et al (2015) High-temperature growth of GaN nanowires by molecular beam epitaxy: toward the material quality of bulk GaN. Cryst Growth Des 15(8):4104–4109CrossRef Zettler JK et al (2015) High-temperature growth of GaN nanowires by molecular beam epitaxy: toward the material quality of bulk GaN. Cryst Growth Des 15(8):4104–4109CrossRef
89.
go back to reference Young Kim H, Park J, Yang H (2003) Synthesis of silicon nitride nanowires directly from the silicon substrates. Chem Phys Lett 372(1–2):269–274CrossRef Young Kim H, Park J, Yang H (2003) Synthesis of silicon nitride nanowires directly from the silicon substrates. Chem Phys Lett 372(1–2):269–274CrossRef
90.
go back to reference Kim HY, Park J, Yang H (2003) Direct synthesis of aligned silicon carbide nanowires from the silicon substrates. Chem Commun (2):256–257 Kim HY, Park J, Yang H (2003) Direct synthesis of aligned silicon carbide nanowires from the silicon substrates. Chem Commun (2):256–257
91.
go back to reference Kumar A, Madaria AR, Zhou C (2010) Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. J Phys Chem C 114(17):7787–7792CrossRef Kumar A, Madaria AR, Zhou C (2010) Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. J Phys Chem C 114(17):7787–7792CrossRef
92.
go back to reference Wang X et al (2014) Aligned epitaxial SnO2 nanowires on sapphire: growth and device applications. Nano Lett 14(6):3014–3022CrossRef Wang X et al (2014) Aligned epitaxial SnO2 nanowires on sapphire: growth and device applications. Nano Lett 14(6):3014–3022CrossRef
93.
go back to reference Jiang X, Herricks T, Xia Y (2002) CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett 2(12):1333–1338CrossRef Jiang X, Herricks T, Xia Y (2002) CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett 2(12):1333–1338CrossRef
94.
go back to reference Fanhao Z et al (2004) Large-scale growth of In 2 O 3 nanowires and their optical properties. Nanotechnology 15(5):596CrossRef Fanhao Z et al (2004) Large-scale growth of In 2 O 3 nanowires and their optical properties. Nanotechnology 15(5):596CrossRef
95.
go back to reference Zhang YF et al (1998) Silicon nanowires prepared by laser ablation at high temperature. Appl Phys Lett 72(15):1835–1837CrossRef Zhang YF et al (1998) Silicon nanowires prepared by laser ablation at high temperature. Appl Phys Lett 72(15):1835–1837CrossRef
96.
go back to reference Wong YY et al (2005) Controlled growth of silicon nanowires synthesized via solid–liquid–solid mechanism. Sci Technol Adv Mater 6(3–4):330–334CrossRef Wong YY et al (2005) Controlled growth of silicon nanowires synthesized via solid–liquid–solid mechanism. Sci Technol Adv Mater 6(3–4):330–334CrossRef
97.
go back to reference Wang C et al (2011) Growth of straight silicon nanowires on amorphous substrates with uniform diameter, length, orientation, and location using nanopatterned host-mediated catalyst. Nano Lett 11(12):5247–5251CrossRef Wang C et al (2011) Growth of straight silicon nanowires on amorphous substrates with uniform diameter, length, orientation, and location using nanopatterned host-mediated catalyst. Nano Lett 11(12):5247–5251CrossRef
98.
go back to reference Treuting RG, Arnold SM (1957) Orientation habits of metal whiskers. Acta Metall 5(10):598CrossRef Treuting RG, Arnold SM (1957) Orientation habits of metal whiskers. Acta Metall 5(10):598CrossRef
99.
go back to reference Pan ZW et al (2001) Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. J Phys Chem B 105(13):2507–2514CrossRef Pan ZW et al (2001) Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. J Phys Chem B 105(13):2507–2514CrossRef
100.
go back to reference Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348):208–211CrossRef Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348):208–211CrossRef
101.
go back to reference Krause A et al (2015) Comparison of silicon nanowire growth on SiO2 and on carbon substrates. ECS Trans 70(1):69–78CrossRef Krause A et al (2015) Comparison of silicon nanowire growth on SiO2 and on carbon substrates. ECS Trans 70(1):69–78CrossRef
102.
go back to reference Kim J, Ji C, Anderson WA (2004) Silicon nanowire growth at relatively low processing temperature. MRS Online Proceedings Library Archive. 818: p. M11.11.1 (6 pages). Kim J, Ji C, Anderson WA (2004) Silicon nanowire growth at relatively low processing temperature. MRS Online Proceedings Library Archive. 818: p. M11.11.1 (6 pages).
103.
go back to reference Cheng SL, Chung CH, Lee HC (2007) Fabrication of vertically aligned silicon nanowire arrays and investigation on the formation of the nickel silicide nanowires. Electron Devices and Solid-State Circuits, 2007. EDSSC 2007. IEEE Conference. pp 121–124. Cheng SL, Chung CH, Lee HC (2007) Fabrication of vertically aligned silicon nanowire arrays and investigation on the formation of the nickel silicide nanowires. Electron Devices and Solid-State Circuits, 2007. EDSSC 2007. IEEE Conference. pp 121–124.
104.
go back to reference Banerjee D et al (2016) Phonon processes in vertically aligned silicon nanowire arrays produced by low-cost all-solution galvanic displacement method. Appl Phys Lett 108(11):113109CrossRef Banerjee D et al (2016) Phonon processes in vertically aligned silicon nanowire arrays produced by low-cost all-solution galvanic displacement method. Appl Phys Lett 108(11):113109CrossRef
105.
go back to reference Sandulova AV, Bogoyavlenskii PS, Dronyum MI (1964) Preparation and some properties of whisker and needle-shaped single crystals of germanium, silicon and their solid solutions. Sov Phys Solid State 5:1883 Sandulova AV, Bogoyavlenskii PS, Dronyum MI (1964) Preparation and some properties of whisker and needle-shaped single crystals of germanium, silicon and their solid solutions. Sov Phys Solid State 5:1883
106.
go back to reference Kennedy T et al (2014) High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. Nano Lett 14(2):716–723CrossRef Kennedy T et al (2014) High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. Nano Lett 14(2):716–723CrossRef
107.
go back to reference Wang D et al (2003) Germanium nanowire field-effect transistors with SiO2 and High-κ Hfo2 gate dielectrics. Appl Phys Lett 83(12):2432–2434CrossRef Wang D et al (2003) Germanium nanowire field-effect transistors with SiO2 and High-κ Hfo2 gate dielectrics. Appl Phys Lett 83(12):2432–2434CrossRef
108.
go back to reference Zhang Y et al (2007) An integrated phase change memory cell with Ge nanowire diode for cross-point memory. In 2007 I.E. Symposium on VLSI Technology, 12 Jun, pp 98–99 Zhang Y et al (2007) An integrated phase change memory cell with Ge nanowire diode for cross-point memory. In 2007 I.E. Symposium on VLSI Technology, 12 Jun, pp 98–99
109.
go back to reference O'Regan C et al (2014) Recent advances in the growth of germanium nanowires: synthesis, growth dynamics and morphology control. J Mater Chem C 2(1):14–33CrossRef O'Regan C et al (2014) Recent advances in the growth of germanium nanowires: synthesis, growth dynamics and morphology control. J Mater Chem C 2(1):14–33CrossRef
110.
go back to reference He Y et al (2005) Vertically well-aligned ZnO nanowires generated with self-assembling polymers. Mater Chem Phys 94(1):29–33CrossRef He Y et al (2005) Vertically well-aligned ZnO nanowires generated with self-assembling polymers. Mater Chem Phys 94(1):29–33CrossRef
111.
go back to reference Yuan Z-Y, Su B-L (2004) Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf A Physicochem Eng Asp 241(1–3):173–183CrossRef Yuan Z-Y, Su B-L (2004) Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf A Physicochem Eng Asp 241(1–3):173–183CrossRef
112.
go back to reference Shi J, Wang X (2011) Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst Growth Des 11(4):949–954CrossRef Shi J, Wang X (2011) Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst Growth Des 11(4):949–954CrossRef
113.
go back to reference Faruque MK et al (2012) Fabrication, characterization, and mechanism of vertically aligned titanium nitride nanowires. Appl Surf Sci 260:36–41CrossRef Faruque MK et al (2012) Fabrication, characterization, and mechanism of vertically aligned titanium nitride nanowires. Appl Surf Sci 260:36–41CrossRef
114.
go back to reference Wang X et al (2015) Confined-space synthesis of single crystal TiO(2) nanowires in atmospheric vessel at low temperature: a generalized approach. Sci Rep 5:8129CrossRef Wang X et al (2015) Confined-space synthesis of single crystal TiO(2) nanowires in atmospheric vessel at low temperature: a generalized approach. Sci Rep 5:8129CrossRef
115.
go back to reference Yin Y, Zhang G, Xia Y (2002) Synthesis and characterization of MgO nanowires through a vapor-phase precursor method. Adv Funct Mater 12(4):293–298CrossRef Yin Y, Zhang G, Xia Y (2002) Synthesis and characterization of MgO nanowires through a vapor-phase precursor method. Adv Funct Mater 12(4):293–298CrossRef
116.
go back to reference Zhang Y et al (2001) A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture. J Cryst Growth 233(4):803–808CrossRef Zhang Y et al (2001) A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture. J Cryst Growth 233(4):803–808CrossRef
117.
go back to reference Xiao Z et al (2006) High-density, aligned SiO2 nanowire arrays: microscopic imaging of the unique growth style and their ultraviolet light emission properties. J Phys Chem B 110(32):15724–15728CrossRef Xiao Z et al (2006) High-density, aligned SiO2 nanowire arrays: microscopic imaging of the unique growth style and their ultraviolet light emission properties. J Phys Chem B 110(32):15724–15728CrossRef
118.
go back to reference Chang C-C et al (2012) Synthesis and growth twinning of Al2O3 nanowires by simple evaporation of Al-Si alloy powder. CrstEngComm 14(3):1117–1121CrossRef Chang C-C et al (2012) Synthesis and growth twinning of Al2O3 nanowires by simple evaporation of Al-Si alloy powder. CrstEngComm 14(3):1117–1121CrossRef
119.
go back to reference Dang TTL, Tonezzer M, Nguyen VH (2015) Hydrothermal growth and hydrogen selective sensing of nickel oxide nanowires. J Nanomater 2015:8 Dang TTL, Tonezzer M, Nguyen VH (2015) Hydrothermal growth and hydrogen selective sensing of nickel oxide nanowires. J Nanomater 2015:8
120.
go back to reference Das S et al (2010) Formation of NiO nanowires on the surface of nickel strips. J Alloys Compd 505(1):L19–L21CrossRef Das S et al (2010) Formation of NiO nanowires on the surface of nickel strips. J Alloys Compd 505(1):L19–L21CrossRef
121.
go back to reference Lin Y et al (2003) Ordered nickel oxide nanowire arrays and their optical absorption properties. Chem Phys Lett 380(5–6):521–525CrossRef Lin Y et al (2003) Ordered nickel oxide nanowire arrays and their optical absorption properties. Chem Phys Lett 380(5–6):521–525CrossRef
122.
go back to reference Pang H et al (2010) Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties. Nanoscale 2(6):920–922CrossRef Pang H et al (2010) Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties. Nanoscale 2(6):920–922CrossRef
123.
go back to reference Patil RA et al (2013) An efficient methodology for measurement of the average electrical properties of single one-dimensional NiO nanorods. Sci Rep 3:3070CrossRef Patil RA et al (2013) An efficient methodology for measurement of the average electrical properties of single one-dimensional NiO nanorods. Sci Rep 3:3070CrossRef
124.
go back to reference Sekiya K et al (2012) Morphology control of nickel oxide nanowires. Microelectron Eng 98:532–535CrossRef Sekiya K et al (2012) Morphology control of nickel oxide nanowires. Microelectron Eng 98:532–535CrossRef
125.
go back to reference Wei ZP et al (2010) A template and catalyst-free metal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as an example. ACS Nano 4(8):4785–4791CrossRef Wei ZP et al (2010) A template and catalyst-free metal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as an example. ACS Nano 4(8):4785–4791CrossRef
126.
go back to reference Zeng W et al (2012) Facile synthesis of NiO nanowires and their gas sensing performance. Trans Nonferrous Met Soc Chin 22:s100–s104CrossRef Zeng W et al (2012) Facile synthesis of NiO nanowires and their gas sensing performance. Trans Nonferrous Met Soc Chin 22:s100–s104CrossRef
127.
go back to reference Bechelany M et al (2007) Synthesis of boron nitride nanotubes by a template-assisted polymer thermolysis process. J Phys Chem C 111(36):13378–13384CrossRef Bechelany M et al (2007) Synthesis of boron nitride nanotubes by a template-assisted polymer thermolysis process. J Phys Chem C 111(36):13378–13384CrossRef
128.
go back to reference Cao L et al (2002) Synthesis of well-aligned boron nanowires and their structural stability under high pressure. J Phys Condens Matter 14(44):11017CrossRef Cao L et al (2002) Synthesis of well-aligned boron nanowires and their structural stability under high pressure. J Phys Condens Matter 14(44):11017CrossRef
129.
go back to reference Cao LM et al (2001) Well-aligned boron nanowire arrays. Adv Mater 13(22):1701–1704CrossRef Cao LM et al (2001) Well-aligned boron nanowire arrays. Adv Mater 13(22):1701–1704CrossRef
130.
go back to reference Deepak FL et al (2002) Boron nitride nanotubes and nanowires. Chem Phys Lett 353(5–6):345–352CrossRef Deepak FL et al (2002) Boron nitride nanotubes and nanowires. Chem Phys Lett 353(5–6):345–352CrossRef
131.
go back to reference Huo KF et al (2002) Synthesis of boron nitride nanowires. Appl Phys Lett 80(19):3611–3613CrossRef Huo KF et al (2002) Synthesis of boron nitride nanowires. Appl Phys Lett 80(19):3611–3613CrossRef
132.
go back to reference Kalay S et al (2015) Synthesis of boron nitride nanotubes and their applications. Beilstein J Nanotechnol 6:84–102CrossRef Kalay S et al (2015) Synthesis of boron nitride nanotubes and their applications. Beilstein J Nanotechnol 6:84–102CrossRef
133.
go back to reference Patel RB, Chou T, Iqbal Z (2015) Synthesis of boron nanowires, nanotubes, and nanosheets. J Nanomater 2015:7CrossRef Patel RB, Chou T, Iqbal Z (2015) Synthesis of boron nanowires, nanotubes, and nanosheets. J Nanomater 2015:7CrossRef
134.
go back to reference Su C-H et al (2015) Self-templating noncatalyzed synthesis of monolithic boron nitride nanowires. RSC Adv 5(92):75810–75816CrossRef Su C-H et al (2015) Self-templating noncatalyzed synthesis of monolithic boron nitride nanowires. RSC Adv 5(92):75810–75816CrossRef
135.
go back to reference Zhou J et al (2014) Vertically-aligned BCN nanotube arrays with superior performance in electrochemical capacitors. Sci Rep 4:6083CrossRef Zhou J et al (2014) Vertically-aligned BCN nanotube arrays with superior performance in electrochemical capacitors. Sci Rep 4:6083CrossRef
136.
go back to reference Zhu Y-C et al (2004) New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. J Phys Chem B 108(20):6193–6196CrossRef Zhu Y-C et al (2004) New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. J Phys Chem B 108(20):6193–6196CrossRef
137.
go back to reference Polleux J et al (2006) Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew Chem 118(2):267–271CrossRef Polleux J et al (2006) Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew Chem 118(2):267–271CrossRef
138.
go back to reference An G-H et al (2011) One-pot fabrication of hollow SiO2 nanowires via an electrospinning technique. Mater Lett 65(15–16):2377–2380CrossRef An G-H et al (2011) One-pot fabrication of hollow SiO2 nanowires via an electrospinning technique. Mater Lett 65(15–16):2377–2380CrossRef
139.
go back to reference Antonio T et al (2010) Scalable flame synthesis of SiO 2 nanowires: dynamics of growth. Nanotechnology 21(46):465604CrossRef Antonio T et al (2010) Scalable flame synthesis of SiO 2 nanowires: dynamics of growth. Nanotechnology 21(46):465604CrossRef
140.
go back to reference Zamchiy A, Baranov E, Khmel S (2014) New approach to the growth of SiO2 nanowires using Sn catalyst on Si substrate. physica status solidi (c) 11(9–10):1397–1400CrossRef Zamchiy A, Baranov E, Khmel S (2014) New approach to the growth of SiO2 nanowires using Sn catalyst on Si substrate. physica status solidi (c) 11(9–10):1397–1400CrossRef
141.
go back to reference Li Y et al (2011) Growth of SiO 2 nanowires on different substrates using Au as a catalyst. J Semiconduct 32(2):023002CrossRef Li Y et al (2011) Growth of SiO 2 nanowires on different substrates using Au as a catalyst. J Semiconduct 32(2):023002CrossRef
142.
go back to reference Yu-Chiao L, Wen-Tai L (2005) Growth of SiO 2 nanowires without a catalyst via carbothermal reduction of CuO powders. Nanotechnology 16(9):1648CrossRef Yu-Chiao L, Wen-Tai L (2005) Growth of SiO 2 nanowires without a catalyst via carbothermal reduction of CuO powders. Nanotechnology 16(9):1648CrossRef
143.
go back to reference Mihailovic D (2009) Inorganic molecular wires: physical and functional properties of transition metal chalco-halide polymers. Prog Mater Sci 54(3):309–350CrossRef Mihailovic D (2009) Inorganic molecular wires: physical and functional properties of transition metal chalco-halide polymers. Prog Mater Sci 54(3):309–350CrossRef
144.
go back to reference Daniel V et al (2004) Air-stable monodispersed Mo 6 S 3 I 6 nanowires. Nanotechnology 15(5):635CrossRef Daniel V et al (2004) Air-stable monodispersed Mo 6 S 3 I 6 nanowires. Nanotechnology 15(5):635CrossRef
145.
go back to reference Potel M et al (1980) New pseudo-one-dimensional metals: M2Mo6Se6 (M = Na, in, K, Ti), M2Mo6S6 (M = K, Rb, Cs), M2Mo6Te6 (M = in, Ti). J Solid State Chem 35(2):286–290CrossRef Potel M et al (1980) New pseudo-one-dimensional metals: M2Mo6Se6 (M = Na, in, K, Ti), M2Mo6S6 (M = K, Rb, Cs), M2Mo6Te6 (M = in, Ti). J Solid State Chem 35(2):286–290CrossRef
146.
go back to reference Remskar M et al (2010) The Mos2 nanotubes with defect-controlled electric properties. Nanoscale Res Lett 6(1):1–6 Remskar M et al (2010) The Mos2 nanotubes with defect-controlled electric properties. Nanoscale Res Lett 6(1):1–6
147.
go back to reference Dvorsek D et al (2007) Growth and field emission properties of vertically aligned molybdenum–sulfur–iodine nanowires on molybdenum and quartz substrates. J Appl Phys 102(11):114308CrossRef Dvorsek D et al (2007) Growth and field emission properties of vertically aligned molybdenum–sulfur–iodine nanowires on molybdenum and quartz substrates. J Appl Phys 102(11):114308CrossRef
148.
go back to reference Messer B, Song JH, Yang P (2000) Microchannel networks for nanowire patterning. J Am Chem Soc 122(41):10232–10233CrossRef Messer B, Song JH, Yang P (2000) Microchannel networks for nanowire patterning. J Am Chem Soc 122(41):10232–10233CrossRef
149.
go back to reference Wu Y et al (2002) Inorganic semiconductor nanowires: rational growth, assembly, and novel properties. Chemistry A 8(6):1260–1268 Wu Y et al (2002) Inorganic semiconductor nanowires: rational growth, assembly, and novel properties. Chemistry A 8(6):1260–1268
150.
go back to reference Chen H et al (2010) Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Mater Sci Eng R Rep 70(3–6):63–91CrossRef Chen H et al (2010) Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Mater Sci Eng R Rep 70(3–6):63–91CrossRef
151.
go back to reference Patole SP et al (2008) Alignment and wall control of ultra long carbon nanotubes in water assisted chemical vapour deposition. J Phys D Appl Phys 41(15):155311CrossRef Patole SP et al (2008) Alignment and wall control of ultra long carbon nanotubes in water assisted chemical vapour deposition. J Phys D Appl Phys 41(15):155311CrossRef
152.
go back to reference Chhowalla M et al (2001) Field emission from short and stubby vertically aligned carbon nanotubes. Appl Phys Lett 79(13):2079–2081CrossRef Chhowalla M et al (2001) Field emission from short and stubby vertically aligned carbon nanotubes. Appl Phys Lett 79(13):2079–2081CrossRef
153.
go back to reference Shang NG et al (2010) High-rate low-temperature growth of vertically aligned carbon nanotubes. Nanotechnology 21(50):505604CrossRef Shang NG et al (2010) High-rate low-temperature growth of vertically aligned carbon nanotubes. Nanotechnology 21(50):505604CrossRef
154.
go back to reference Ago H et al (2011) Ultrahigh-vacuum-assisted control of metal nanoparticles for horizontally aligned single-walled carbon nanotubes with extraordinary uniform diameters. J Phys Chem C 115(27):13247–13253CrossRef Ago H et al (2011) Ultrahigh-vacuum-assisted control of metal nanoparticles for horizontally aligned single-walled carbon nanotubes with extraordinary uniform diameters. J Phys Chem C 115(27):13247–13253CrossRef
155.
go back to reference Almaqwashi AA et al (2011) Variable-force microscopy for advanced characterization of horizontally aligned carbon nanotubes. Nanotechnology 22(27):275717CrossRef Almaqwashi AA et al (2011) Variable-force microscopy for advanced characterization of horizontally aligned carbon nanotubes. Nanotechnology 22(27):275717CrossRef
156.
go back to reference Cui R et al (2010) Comparison between copper and iron as catalyst for chemical vapor deposition of horizontally aligned ultralong single-walled carbon nanotubes on silicon substrates. J Phys Chem C 114(37):15547–15552CrossRef Cui R et al (2010) Comparison between copper and iron as catalyst for chemical vapor deposition of horizontally aligned ultralong single-walled carbon nanotubes on silicon substrates. J Phys Chem C 114(37):15547–15552CrossRef
157.
go back to reference Ding L et al (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9(2):800–805CrossRef Ding L et al (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9(2):800–805CrossRef
158.
go back to reference Ding L, Yuan D, Liu J (2008) Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J Am Chem Soc 130(16):5428–5429CrossRef Ding L, Yuan D, Liu J (2008) Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J Am Chem Soc 130(16):5428–5429CrossRef
159.
go back to reference Hong SW, Banks T, Rogers JA (2010) Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv Mater 22(16):1826–1830CrossRef Hong SW, Banks T, Rogers JA (2010) Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv Mater 22(16):1826–1830CrossRef
160.
go back to reference Huang L et al (2006) Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. J Phys Chem B 110(23):11103–11109CrossRef Huang L et al (2006) Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. J Phys Chem B 110(23):11103–11109CrossRef
161.
go back to reference Huang S et al (2004) Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating”chemical vapor deposition process. Nano Lett 4(6):1025–1028CrossRef Huang S et al (2004) Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating”chemical vapor deposition process. Nano Lett 4(6):1025–1028CrossRef
163.
go back to reference Ismach A, Kantorovich D, Joselevich E (2005) Carbon nanotube graphoepitaxy: highly oriented growth by faceted nanosteps. J Am Chem Soc 127(33):11554–11555CrossRef Ismach A, Kantorovich D, Joselevich E (2005) Carbon nanotube graphoepitaxy: highly oriented growth by faceted nanosteps. J Am Chem Soc 127(33):11554–11555CrossRef
164.
go back to reference Kang SJ et al (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2(4):230–236CrossRef Kang SJ et al (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2(4):230–236CrossRef
165.
go back to reference Kocabas C et al (2005) Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1(11):1110–1116CrossRef Kocabas C et al (2005) Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1(11):1110–1116CrossRef
166.
go back to reference Ozel T et al (2009) Nonuniform compressive strain in horizontally aligned single-walled carbon nanotubes grown on single crystal quartz. ACS Nano 3(8):2217–2224CrossRef Ozel T et al (2009) Nonuniform compressive strain in horizontally aligned single-walled carbon nanotubes grown on single crystal quartz. ACS Nano 3(8):2217–2224CrossRef
167.
go back to reference Reina A et al (2007) Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. J Phys Chem C 111(20):7292–7297CrossRef Reina A et al (2007) Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. J Phys Chem C 111(20):7292–7297CrossRef
168.
go back to reference Shadmi N et al (2015) Guided growth of horizontal single-wall carbon nanotubes on M-plane sapphire. J Phys Chem C 119(15):8382–8387CrossRef Shadmi N et al (2015) Guided growth of horizontal single-wall carbon nanotubes on M-plane sapphire. J Phys Chem C 119(15):8382–8387CrossRef
169.
go back to reference Yu Q et al (2006) Mechanism of horizontally aligned growth of single-wall carbon nanotubes on R-plane sapphire. J Phys Chem B 110(45):22676–22680CrossRef Yu Q et al (2006) Mechanism of horizontally aligned growth of single-wall carbon nanotubes on R-plane sapphire. J Phys Chem B 110(45):22676–22680CrossRef
170.
go back to reference Yuan D et al (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8(8):2576–2579CrossRef Yuan D et al (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8(8):2576–2579CrossRef
171.
go back to reference Zhou W et al (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6(12):2987–2990CrossRef Zhou W et al (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6(12):2987–2990CrossRef
172.
go back to reference AuBuchon JF et al (2006) Electric-field-guided growth of carbon nanotubes during DC plasma-enhanced CVD. Chem Vap Deposition 12(6):370–374CrossRef AuBuchon JF et al (2006) Electric-field-guided growth of carbon nanotubes during DC plasma-enhanced CVD. Chem Vap Deposition 12(6):370–374CrossRef
173.
go back to reference Chai Y, Xiao Z, Chan PCH (2009) Fabrication and characterization of horizontally aligned carbon nanotubes for interconnect application. 2009 59th electronic components and technology conference, San Diego, CA, May 2009. pp 1465–1469 Chai Y, Xiao Z, Chan PCH (2009) Fabrication and characterization of horizontally aligned carbon nanotubes for interconnect application. 2009 59th electronic components and technology conference, San Diego, CA, May 2009. pp 1465–1469
174.
go back to reference Chai Y, Xiao Z, Chan PCH (2010) Horizontally aligned carbon nanotube bundles for interconnect application: diameter-dependent contact resistance and mean free path. Nanotechnology 21(23):235705CrossRef Chai Y, Xiao Z, Chan PCH (2010) Horizontally aligned carbon nanotube bundles for interconnect application: diameter-dependent contact resistance and mean free path. Nanotechnology 21(23):235705CrossRef
175.
go back to reference Hayashi Y et al (2010) Direct growth of horizontally aligned carbon nanotubes between electrodes and its application to field-effect transistors. 2010 3rd international nanoelectronics conference (INEC). pp 215–216 Hayashi Y et al (2010) Direct growth of horizontally aligned carbon nanotubes between electrodes and its application to field-effect transistors. 2010 3rd international nanoelectronics conference (INEC). pp 215–216
176.
go back to reference Joselevich E, Lieber CM (2002) Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett 2(10):1137–1141CrossRef Joselevich E, Lieber CM (2002) Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett 2(10):1137–1141CrossRef
177.
go back to reference Jung SM, Jung HY, Suh JS (2007) Horizontally aligned carbon nanotube field emitters having a long term stability. Carbon 45(15):2917–2921CrossRef Jung SM, Jung HY, Suh JS (2007) Horizontally aligned carbon nanotube field emitters having a long term stability. Carbon 45(15):2917–2921CrossRef
178.
go back to reference Jung SM, Jung HY, Suh JS (2008) Horizontally aligned carbon nanotube field emitters fabricated on ITO glass substrates. Carbon 46(14):1973–1977CrossRef Jung SM, Jung HY, Suh JS (2008) Horizontally aligned carbon nanotube field emitters fabricated on ITO glass substrates. Carbon 46(14):1973–1977CrossRef
179.
go back to reference Law JBK, Koo CK, Thong JTL (2007) Horizontally directed growth of carbon nanotubes utilizing self-generated electric field from plasma induced surface charging. Appl Phys Lett 91(24):243108CrossRef Law JBK, Koo CK, Thong JTL (2007) Horizontally directed growth of carbon nanotubes utilizing self-generated electric field from plasma induced surface charging. Appl Phys Lett 91(24):243108CrossRef
180.
go back to reference Ural A, Li Y, Dai H (2002) Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Appl Phys Lett 81(18):3464–3466CrossRef Ural A, Li Y, Dai H (2002) Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Appl Phys Lett 81(18):3464–3466CrossRef
181.
go back to reference Zhang Y et al (2001) Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl Phys Lett 79(19):3155–3157CrossRef Zhang Y et al (2001) Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl Phys Lett 79(19):3155–3157CrossRef
182.
go back to reference Ago H et al (2006) Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized raman spectroscopy. Chem Phys Lett 421(4–6):399–403CrossRef Ago H et al (2006) Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized raman spectroscopy. Chem Phys Lett 421(4–6):399–403CrossRef
183.
go back to reference Hong BH et al (2005) Quasi-continuous growth of ultralong carbon nanotube arrays. J Am Chem Soc 127(44):15336–15337CrossRef Hong BH et al (2005) Quasi-continuous growth of ultralong carbon nanotube arrays. J Am Chem Soc 127(44):15336–15337CrossRef
184.
go back to reference Hsu CM et al (2002) Growth of the large area horizontally-aligned carbon nanotubes by ECR-CVD. Thin Solid Films 420–421:225–229CrossRef Hsu CM et al (2002) Growth of the large area horizontally-aligned carbon nanotubes by ECR-CVD. Thin Solid Films 420–421:225–229CrossRef
185.
go back to reference Huang S, Cai X, Liu J (2003) Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc 125(19):5636–5637CrossRef Huang S, Cai X, Liu J (2003) Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc 125(19):5636–5637CrossRef
186.
go back to reference Jin Z et al (2007) Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett 7(7):2073–2079CrossRef Jin Z et al (2007) Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett 7(7):2073–2079CrossRef
187.
go back to reference Li L et al (2012) Electrochemical growth of gold nanoparticles on horizontally aligned carbon nanotubes: a new platform for ultrasensitive DNA sensing. Biosens Bioelectron 33(1):279–283MathSciNetCrossRef Li L et al (2012) Electrochemical growth of gold nanoparticles on horizontally aligned carbon nanotubes: a new platform for ultrasensitive DNA sensing. Biosens Bioelectron 33(1):279–283MathSciNetCrossRef
188.
go back to reference Liu H et al (2009) The controlled growth of horizontally aligned single-walled carbon nanotube arrays by a gas flow process. Nanotechnology 20(34):345604CrossRef Liu H et al (2009) The controlled growth of horizontally aligned single-walled carbon nanotube arrays by a gas flow process. Nanotechnology 20(34):345604CrossRef
189.
go back to reference Liu Y et al (2009) Flexible orientation control of ultralong single-walled carbon nanotubes by gas flow. Nanotechnology 20(18):185601CrossRef Liu Y et al (2009) Flexible orientation control of ultralong single-walled carbon nanotubes by gas flow. Nanotechnology 20(18):185601CrossRef
190.
go back to reference Xie H et al (2016) Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays. Carbon 98:157–161CrossRef Xie H et al (2016) Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays. Carbon 98:157–161CrossRef
191.
go back to reference Dayeh SA, Picraux ST (2010) Direct observation of nanoscale size effects in ge semiconductor nanowire growth. Nano Lett 10(10):4032–4039CrossRef Dayeh SA, Picraux ST (2010) Direct observation of nanoscale size effects in ge semiconductor nanowire growth. Nano Lett 10(10):4032–4039CrossRef
192.
go back to reference Qi H et al (2012) Growth of vertically aligned ZnO nanowire arrays using bilayered metal catalysts. J Nanomater 2012:7 Qi H et al (2012) Growth of vertically aligned ZnO nanowire arrays using bilayered metal catalysts. J Nanomater 2012:7
193.
go back to reference Fengmei G et al (2008) Aligned ultra-long single-crystalline Α—Si 3 N 4 nanowires. Nanotechnology 19(10):105602CrossRef Fengmei G et al (2008) Aligned ultra-long single-crystalline Α—Si 3 N 4 nanowires. Nanotechnology 19(10):105602CrossRef
194.
go back to reference Woodruff JH et al (2007) Vertically oriented germanium nanowires grown from gold colloids on silicon substrates and subsequent gold removal. Nano Lett 7(6):1637–1642CrossRef Woodruff JH et al (2007) Vertically oriented germanium nanowires grown from gold colloids on silicon substrates and subsequent gold removal. Nano Lett 7(6):1637–1642CrossRef
195.
go back to reference Toko K et al (2015) Vertically aligned Ge nanowires on flexible plastic films synthesized by (111)-oriented Ge seeded vapor–liquid–solid growth. ACS Appl Mater Interfaces 7(32):18120–18124CrossRef Toko K et al (2015) Vertically aligned Ge nanowires on flexible plastic films synthesized by (111)-oriented Ge seeded vapor–liquid–solid growth. ACS Appl Mater Interfaces 7(32):18120–18124CrossRef
196.
go back to reference Sierra-Sastre Y et al (2008) Vertical growth of Ge nanowires from biotemplated Au nanoparticle catalysts. J Am Chem Soc 130(32):10488–10489CrossRef Sierra-Sastre Y et al (2008) Vertical growth of Ge nanowires from biotemplated Au nanoparticle catalysts. J Am Chem Soc 130(32):10488–10489CrossRef
197.
go back to reference O’Regan C et al (2013) Engineering the growth of germanium nanowires by tuning the supersaturation of Au/Ge binary alloy catalysts. Chem Mater 25(15):3096–3104CrossRef O’Regan C et al (2013) Engineering the growth of germanium nanowires by tuning the supersaturation of Au/Ge binary alloy catalysts. Chem Mater 25(15):3096–3104CrossRef
198.
go back to reference Li CB et al (2008) Controlled Ge nanowires growth on patterned Au catalyst substrate. 2008 I.E. silicon nanoelectronics workshop, pp 1–2 Li CB et al (2008) Controlled Ge nanowires growth on patterned Au catalyst substrate. 2008 I.E. silicon nanoelectronics workshop, pp 1–2
199.
go back to reference Leu PW et al (2008) Oxide-encapsulated vertical germanium nanowire structures and their DC transport properties. Nanotechnology 19(48):485705CrossRef Leu PW et al (2008) Oxide-encapsulated vertical germanium nanowire structures and their DC transport properties. Nanotechnology 19(48):485705CrossRef
200.
go back to reference Kawamura Y et al (2012) Direct-gap photoluminescence from germanium nanowires. Physical Review B 86(3):035306CrossRef Kawamura Y et al (2012) Direct-gap photoluminescence from germanium nanowires. Physical Review B 86(3):035306CrossRef
201.
go back to reference Liangbing H, Hecht DS, Grüner G (2009) Infrared transparent carbon nanotube thin films. Appl Phys Lett 94(8):081103. (3 pp)CrossRef Liangbing H, Hecht DS, Grüner G (2009) Infrared transparent carbon nanotube thin films. Appl Phys Lett 94(8):081103. (3 pp)CrossRef
202.
go back to reference Adhikari H et al (2006) Germanium nanowire epitaxy: shape and orientation control. Nano Lett 6(2):318–323CrossRef Adhikari H et al (2006) Germanium nanowire epitaxy: shape and orientation control. Nano Lett 6(2):318–323CrossRef
203.
go back to reference Geng C et al (2004) Well-aligned ZnO nanowire arrays fabricated on silicon substrates. Adv Funct Mater 14(6):589–594CrossRef Geng C et al (2004) Well-aligned ZnO nanowire arrays fabricated on silicon substrates. Adv Funct Mater 14(6):589–594CrossRef
204.
go back to reference Jamali Sheini F et al (2010) Low temperature growth of aligned ZnO nanowires and their application as field emission cathodes. Mater Chem Phys 120(2–3):691–696CrossRef Jamali Sheini F et al (2010) Low temperature growth of aligned ZnO nanowires and their application as field emission cathodes. Mater Chem Phys 120(2–3):691–696CrossRef
205.
go back to reference Ji L-W et al (2009) Effect of seed layer on the growth of well-aligned ZnO nanowires. J Phys Chem Solid 70(10):1359–1362CrossRef Ji L-W et al (2009) Effect of seed layer on the growth of well-aligned ZnO nanowires. J Phys Chem Solid 70(10):1359–1362CrossRef
206.
go back to reference Liu F et al (2005) Well-aligned zinc oxide nanorods and nanowires prepared without catalyst. J Cryst Growth 274(1–2):126–131CrossRef Liu F et al (2005) Well-aligned zinc oxide nanorods and nanowires prepared without catalyst. J Cryst Growth 274(1–2):126–131CrossRef
207.
go back to reference Tak Y, Yong K (2005) Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J Phys Chem B 109(41):19263–19269CrossRef Tak Y, Yong K (2005) Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J Phys Chem B 109(41):19263–19269CrossRef
208.
go back to reference Unalan HE et al (2008) Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 19(25):255608CrossRef Unalan HE et al (2008) Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 19(25):255608CrossRef
209.
go back to reference Xu S et al (2008) Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J Am Chem Soc 130(45):14958–14959CrossRef Xu S et al (2008) Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J Am Chem Soc 130(45):14958–14959CrossRef
210.
go back to reference Zeng Y-J et al (2005) Well-aligned ZnO nanowires grown on Si substrate via metal–organic chemical vapor deposition. Appl Surf Sci 250(1–4):280–283CrossRef Zeng Y-J et al (2005) Well-aligned ZnO nanowires grown on Si substrate via metal–organic chemical vapor deposition. Appl Surf Sci 250(1–4):280–283CrossRef
211.
go back to reference Zhitao H et al (2013) Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method. J Semiconduct 34(6):063002CrossRef Zhitao H et al (2013) Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method. J Semiconduct 34(6):063002CrossRef
212.
go back to reference Lin W et al (2009) Vertically aligned carbon nanotubes on copper substrates for applications as thermal interface materials: from synthesis to assembly. 2009 59th electronic components and technology conference, pp 441–447 Lin W et al (2009) Vertically aligned carbon nanotubes on copper substrates for applications as thermal interface materials: from synthesis to assembly. 2009 59th electronic components and technology conference, pp 441–447
213.
go back to reference Qi HJ et al (2003) Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J Mech Phys Solids 51(11–12):2213–2237CrossRef Qi HJ et al (2003) Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J Mech Phys Solids 51(11–12):2213–2237CrossRef
214.
go back to reference Qu L, Du F, Dai L (2008) Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett 8(9):2682–2687CrossRef Qu L, Du F, Dai L (2008) Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett 8(9):2682–2687CrossRef
215.
go back to reference Ren ZF et al (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391):1105–1107CrossRef Ren ZF et al (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391):1105–1107CrossRef
216.
go back to reference Shahzad MI et al (2013) Growth of vertically aligned multiwall carbon nanotubes columns. J Phys Conf Ser 439(1):012008CrossRef Shahzad MI et al (2013) Growth of vertically aligned multiwall carbon nanotubes columns. J Phys Conf Ser 439(1):012008CrossRef
217.
go back to reference Van Hooijdonk E et al (2013) Functionalization of vertically aligned carbon nanotubes. Beilstein J Nanotechnol 4:129–152CrossRef Van Hooijdonk E et al (2013) Functionalization of vertically aligned carbon nanotubes. Beilstein J Nanotechnol 4:129–152CrossRef
218.
go back to reference Yu M et al (2009) High density, vertically-aligned carbon nanotube membranes. Nano Lett 9(1):225–229CrossRef Yu M et al (2009) High density, vertically-aligned carbon nanotube membranes. Nano Lett 9(1):225–229CrossRef
219.
go back to reference Zhu H et al (2001) Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature. Appl Surf Sci 178(1–4):50–55CrossRef Zhu H et al (2001) Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature. Appl Surf Sci 178(1–4):50–55CrossRef
220.
go back to reference Remškar DVM et al (2004) Air-stable monodispersed Mo 6 S 3 I 6 nanowires. Nanotechnology 15(5):635CrossRef Remškar DVM et al (2004) Air-stable monodispersed Mo 6 S 3 I 6 nanowires. Nanotechnology 15(5):635CrossRef
221.
go back to reference Zhang Z et al (2015) Ultrathin inorganic molecular nanowire based on polyoxometalates. Nat Commun 6 Zhang Z et al (2015) Ultrathin inorganic molecular nanowire based on polyoxometalates. Nat Commun 6
Metadata
Title
Aligned Nanowire Growth
Authors
V. Cientanni
W. I. Milne
M. T. Cole
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-67132-1_1