Skip to main content
Top
Published in: Meccanica 10/2017

09-12-2016

A 3-phase model for the numerical analysis of semi-crystalline polymer films in finite elastoplastic strains

Authors: Philippe Le Grognec, Salim Chaki, Fanfei Zeng, Mélanie Nottez

Published in: Meccanica | Issue 10/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the mechanical behavior of semi-crystalline polymer films in finite elastoplastic strains is investigated. A 3-phase constitutive model has been specially developed in a previous paper and validated for various materials in both uniaxial and biaxial uniform hot drawing. In the present study, the numerical implementation of this 3-phase model in a finite element software is outlined in the perspective of using this model in more general non-uniform cases of complex geometries and/or loadings. In the present case, only polyethylene films at room temperature are considered. First, uniaxial tensile experimental tests are performed so as to calibrate the model parameters. Then, for validation purposes, two series of experimental tests are conducted on tensile specimens with central holes and double edge notched tensile (DENT) specimens. During these tests, digital image correlation is used to analyze the strain (or displacement) field history during loading. Finally, numerical computations are performed with the help of the finite element software including the 3-phase model previously implemented (cohesive elements are also needed for the simulation of the crack propagation in DENT specimens). In both cases, the comparison between the experimental and numerical force–displacement curves, together with the comparisons between the experimental and numerical strain fields at different times, give very satisfactory results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Huang CH, Wu JS, Huang CC, Lin LS (2003) Adhesion, permeability and mechanical properties of multilayered blown films using maleated low-density polyethylene blends as adhesion-promoting layers. Polym J 35(12):978–984CrossRef Huang CH, Wu JS, Huang CC, Lin LS (2003) Adhesion, permeability and mechanical properties of multilayered blown films using maleated low-density polyethylene blends as adhesion-promoting layers. Polym J 35(12):978–984CrossRef
2.
go back to reference Kuhn W, Grün F (1942) Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe. Kolloid-Z 101(3):248–271CrossRef Kuhn W, Grün F (1942) Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe. Kolloid-Z 101(3):248–271CrossRef
3.
go back to reference James HM, Guth E (1943) Theory of the elastic properties of rubber. J Chem Phys 11(10):455–481ADSCrossRef James HM, Guth E (1943) Theory of the elastic properties of rubber. J Chem Phys 11(10):455–481ADSCrossRef
4.
go back to reference Diani J, Brieu M, Vacherand JM, Rezgui A (2004) Directional model for isotropic and anisotropic hyperelastic rubber-like materials. Mech Mater 36(4):313–321CrossRef Diani J, Brieu M, Vacherand JM, Rezgui A (2004) Directional model for isotropic and anisotropic hyperelastic rubber-like materials. Mech Mater 36(4):313–321CrossRef
5.
go back to reference Richeton J, Ahzi S, Vecchio KS, Jiang FC, Makradi A (2007) Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int J Solids Struct 44(24):7938–7954CrossRefMATH Richeton J, Ahzi S, Vecchio KS, Jiang FC, Makradi A (2007) Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int J Solids Struct 44(24):7938–7954CrossRefMATH
6.
go back to reference van Dommelen JAW, Parks DM, Boyce MC, Brekelmans WAM, Baaijens FPT (2003) Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers. J Mech Phys Solids 51(3):519–541ADSCrossRefMATH van Dommelen JAW, Parks DM, Boyce MC, Brekelmans WAM, Baaijens FPT (2003) Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers. J Mech Phys Solids 51(3):519–541ADSCrossRefMATH
7.
go back to reference Bergström JS, Kurtz SM, Rimnac CM, Edidin AA (2002) Constitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions. Biomaterials 23(11):2329–2343CrossRef Bergström JS, Kurtz SM, Rimnac CM, Edidin AA (2002) Constitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions. Biomaterials 23(11):2329–2343CrossRef
8.
go back to reference Lee BJ, Argon AS, Parks DM, Ahzi S, Bartczak Z (1993) Simulation of large strain plastic deformation and texture evolution in high density polyethylene. Polymer 34(17):3555–3575CrossRef Lee BJ, Argon AS, Parks DM, Ahzi S, Bartczak Z (1993) Simulation of large strain plastic deformation and texture evolution in high density polyethylene. Polymer 34(17):3555–3575CrossRef
9.
go back to reference Dupaix RB, Boyce MC (2007) Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech Mater 39(1):39–52CrossRef Dupaix RB, Boyce MC (2007) Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech Mater 39(1):39–52CrossRef
10.
go back to reference Richeton J, Ahzi S, Vecchio KS, Jiang FC, Adharapurapu RR (2006) Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress. Int J Solids Struct 43(7–8):2318–2335CrossRef Richeton J, Ahzi S, Vecchio KS, Jiang FC, Adharapurapu RR (2006) Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress. Int J Solids Struct 43(7–8):2318–2335CrossRef
11.
go back to reference Gueguen O, Richeton J, Ahzi S, Makradi A (2008) Micromechanically based formulation of the cooperative model for the yield behavior of semi-crystalline polymers. Acta Mater 56(7):1650–1655CrossRef Gueguen O, Richeton J, Ahzi S, Makradi A (2008) Micromechanically based formulation of the cooperative model for the yield behavior of semi-crystalline polymers. Acta Mater 56(7):1650–1655CrossRef
12.
go back to reference Ayoub G, Zaïri F, Fréderix C, Gloaguen JM, Naït-Abdelaziz M, Seguela R, Lefebvre JM (2011) Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: experiments and constitutive modelling. Int J Plast 27(4):492–511CrossRefMATH Ayoub G, Zaïri F, Fréderix C, Gloaguen JM, Naït-Abdelaziz M, Seguela R, Lefebvre JM (2011) Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: experiments and constitutive modelling. Int J Plast 27(4):492–511CrossRefMATH
13.
go back to reference Ponçot M, Addiego F, Dahoun A (2013) True intrinsic mechanical behaviour of semi-crystalline and amorphous polymers: influences of volume deformation and cavities shape. Int J Plast 40:126–139CrossRef Ponçot M, Addiego F, Dahoun A (2013) True intrinsic mechanical behaviour of semi-crystalline and amorphous polymers: influences of volume deformation and cavities shape. Int J Plast 40:126–139CrossRef
14.
go back to reference Regrain C, Laiarinandrasana L, Toillon S, Saï K (2009) Multi-mechanism models for semi-crystalline polymer: constitutive relations and finite element implementation. Int J Plast 25(7):1253–1279CrossRefMATH Regrain C, Laiarinandrasana L, Toillon S, Saï K (2009) Multi-mechanism models for semi-crystalline polymer: constitutive relations and finite element implementation. Int J Plast 25(7):1253–1279CrossRefMATH
15.
go back to reference Khan F, Yeakle C, Gomaa S (2012) Characterization of the mechanical properties of a new grade of ultra high molecular weight polyethylene and modeling with the viscoplasticity based on overstress. J Mech Behav Biomed Mater 6:174–180CrossRef Khan F, Yeakle C, Gomaa S (2012) Characterization of the mechanical properties of a new grade of ultra high molecular weight polyethylene and modeling with the viscoplasticity based on overstress. J Mech Behav Biomed Mater 6:174–180CrossRef
16.
go back to reference Farrokh B, Khan AS (2010) A strain rate dependent yield criterion for isotropic polymers: low to high rates of loading. Eur J Mech A/Solids 29(2):274–282CrossRef Farrokh B, Khan AS (2010) A strain rate dependent yield criterion for isotropic polymers: low to high rates of loading. Eur J Mech A/Solids 29(2):274–282CrossRef
17.
go back to reference Rozanski A, Galeski A (2013) Plastic yielding of semicrystalline polymers affected by amorphous phase. Int J Plast 41:14–29CrossRef Rozanski A, Galeski A (2013) Plastic yielding of semicrystalline polymers affected by amorphous phase. Int J Plast 41:14–29CrossRef
18.
go back to reference Hachour K, Zaïri F, Naït-Abdelaziz M, Gloaguen JM, Aberkane M, Lefebvre JM (2014) Experiments and modeling of high-crystalline polyethylene yielding under different stress states. Int J Plast 54:1–18CrossRef Hachour K, Zaïri F, Naït-Abdelaziz M, Gloaguen JM, Aberkane M, Lefebvre JM (2014) Experiments and modeling of high-crystalline polyethylene yielding under different stress states. Int J Plast 54:1–18CrossRef
19.
go back to reference Srivastava V, Chester SA, Ames NM, Anand L (2010) A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. Int J Plast 26(8):1138–1182CrossRefMATH Srivastava V, Chester SA, Ames NM, Anand L (2010) A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. Int J Plast 26(8):1138–1182CrossRefMATH
20.
go back to reference Uchida M, Tada N (2013) Micro-, meso- to macroscopic modeling of deformation behavior of semi-crystalline polymer. Int J Plast 49:164–184CrossRef Uchida M, Tada N (2013) Micro-, meso- to macroscopic modeling of deformation behavior of semi-crystalline polymer. Int J Plast 49:164–184CrossRef
21.
go back to reference Maurel-Pantel A, Baquet E, Bikard J, Bouvard JL, Billon N (2015) A thermo-mechanical large deformation constitutive model for polymers based on material network description: application to a semi-crystalline polyamide 66. Int J Plast 67:102–126CrossRef Maurel-Pantel A, Baquet E, Bikard J, Bouvard JL, Billon N (2015) A thermo-mechanical large deformation constitutive model for polymers based on material network description: application to a semi-crystalline polyamide 66. Int J Plast 67:102–126CrossRef
22.
go back to reference Zeng F, Le Grognec P, Lacrampe MF, Krawczak P (2010) A constitutive model for semi-crystalline polymers at high temperature and finite plastic strain: application to PA6 and PE biaxial stretching. Mech Mater 42(7):686–697CrossRef Zeng F, Le Grognec P, Lacrampe MF, Krawczak P (2010) A constitutive model for semi-crystalline polymers at high temperature and finite plastic strain: application to PA6 and PE biaxial stretching. Mech Mater 42(7):686–697CrossRef
23.
go back to reference Kajberg J, Sundin KG, Melin LG, Ståhle P (2004) High strain-rate tensile testing and viscoplastic parameter identification using microscopic high-speed photography. Int J Plast 20(4–5):561–575CrossRefMATH Kajberg J, Sundin KG, Melin LG, Ståhle P (2004) High strain-rate tensile testing and viscoplastic parameter identification using microscopic high-speed photography. Int J Plast 20(4–5):561–575CrossRefMATH
24.
go back to reference Yoshida F (2000) A constitutive model of cyclic plasticity. Int J Plast 16(3–4):359–380CrossRefMATH Yoshida F (2000) A constitutive model of cyclic plasticity. Int J Plast 16(3–4):359–380CrossRefMATH
25.
go back to reference Besnard G, Hild F, Roux S (2006) “Finite-element” displacement fields analysis from digital images: application to Portevin-Le Châtelier bands. Exp Mech 46(6):789–803CrossRef Besnard G, Hild F, Roux S (2006) “Finite-element” displacement fields analysis from digital images: application to Portevin-Le Châtelier bands. Exp Mech 46(6):789–803CrossRef
26.
go back to reference Avril S, Pierron F, Sutton MA, Yan J (2008) Identification of elasto-visco-plastic parameters and characterization of Lüders behavior using digital image correlation and the virtual fields method. Mech Mater 40(9):729–742CrossRef Avril S, Pierron F, Sutton MA, Yan J (2008) Identification of elasto-visco-plastic parameters and characterization of Lüders behavior using digital image correlation and the virtual fields method. Mech Mater 40(9):729–742CrossRef
27.
go back to reference Sutton MA, Walters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139CrossRef Sutton MA, Walters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139CrossRef
28.
go back to reference Sutton MA, Cheng M, Peters WH, Chao YJ, McNeill SR (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4(3):143–150CrossRef Sutton MA, Cheng M, Peters WH, Chao YJ, McNeill SR (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4(3):143–150CrossRef
29.
go back to reference Balieu R, Lauro F, Bennani B, Haugou G, Chaari F, Matsumoto T, Mottola E (2015) Damage at high strain rates in semi-crystalline polymers. Int J Impact Eng 76:1–8CrossRef Balieu R, Lauro F, Bennani B, Haugou G, Chaari F, Matsumoto T, Mottola E (2015) Damage at high strain rates in semi-crystalline polymers. Int J Impact Eng 76:1–8CrossRef
30.
go back to reference Uchida M, Tada N (2011) Sequential evaluation of continuous deformation field of semi-crystalline polymers during tensile deformation accompanied by neck propagation. Int J Plast 27(12):2085–2102CrossRefMATH Uchida M, Tada N (2011) Sequential evaluation of continuous deformation field of semi-crystalline polymers during tensile deformation accompanied by neck propagation. Int J Plast 27(12):2085–2102CrossRefMATH
31.
go back to reference Hong K, Rastogi A, Strobl G (2004) A model treating tensile deformation of semi-crystalline polymers: quasi-static stress–strain relationship and viscous stress determined for a sample of polyethylene. Macromolecules 37(26):10165–10173ADSCrossRef Hong K, Rastogi A, Strobl G (2004) A model treating tensile deformation of semi-crystalline polymers: quasi-static stress–strain relationship and viscous stress determined for a sample of polyethylene. Macromolecules 37(26):10165–10173ADSCrossRef
32.
go back to reference Drozdov AD, de Christiansen JC (2008) Thermo-viscoelastic and viscoplastic behavior of high-density polyethylene. Int J Solids Struct 45(14–15):4274–4288CrossRefMATH Drozdov AD, de Christiansen JC (2008) Thermo-viscoelastic and viscoplastic behavior of high-density polyethylene. Int J Solids Struct 45(14–15):4274–4288CrossRefMATH
33.
go back to reference Peacock AJ (2000) Handbook of polyethylene: structures, properties and applications. Marcel Dekker, New York Peacock AJ (2000) Handbook of polyethylene: structures, properties and applications. Marcel Dekker, New York
34.
go back to reference Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41(2):389–412ADSCrossRefMATH Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41(2):389–412ADSCrossRefMATH
35.
go back to reference Baghani M, Arghavani J, Naghdabadi R (2014) A finite deformation constitutive model for shape memory polymers based on Hencky strain. Mech Mater 73:1–10CrossRef Baghani M, Arghavani J, Naghdabadi R (2014) A finite deformation constitutive model for shape memory polymers based on Hencky strain. Mech Mater 73:1–10CrossRef
36.
go back to reference Bergström JS, Boyce MC (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 46(5):931–954ADSCrossRefMATH Bergström JS, Boyce MC (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 46(5):931–954ADSCrossRefMATH
37.
go back to reference Zeng F (2010) On the modeling of the mechanical behavior in finite elastoplasticity of shrink wrap films (Contribution à la modélisation du comportement mécanique en grandes déformations élastoplastiques de films plastiques d’emballage). Ph.D. thesis, University of Lille, France Zeng F (2010) On the modeling of the mechanical behavior in finite elastoplasticity of shrink wrap films (Contribution à la modélisation du comportement mécanique en grandes déformations élastoplastiques de films plastiques d’emballage). Ph.D. thesis, University of Lille, France
38.
go back to reference Voyiadjis GZ, Shojaei A, Mozaffari N (2014) Strain gradient plasticity for amorphous and crystalline polymers with application to micro- and nano-scale deformation analysis. Polymer 55(16):4182–4198CrossRef Voyiadjis GZ, Shojaei A, Mozaffari N (2014) Strain gradient plasticity for amorphous and crystalline polymers with application to micro- and nano-scale deformation analysis. Polymer 55(16):4182–4198CrossRef
Metadata
Title
A 3-phase model for the numerical analysis of semi-crystalline polymer films in finite elastoplastic strains
Authors
Philippe Le Grognec
Salim Chaki
Fanfei Zeng
Mélanie Nottez
Publication date
09-12-2016
Publisher
Springer Netherlands
Published in
Meccanica / Issue 10/2017
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-016-0586-9

Other articles of this Issue 10/2017

Meccanica 10/2017 Go to the issue

Premium Partners