Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 12/2017

24-05-2017 | Original Article

A 6-DOF parallel bone-grinding robot for cervical disc replacement surgery

Authors: Heqiang Tian, Chenchen Wang, Xiaoqing Dang, Lining Sun

Published in: Medical & Biological Engineering & Computing | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Artificial cervical disc replacement surgery has become an effective and main treatment method for cervical disease, which has become a more common and serious problem for people with sedentary work. To improve cervical disc replacement surgery significantly, a 6-DOF parallel bone-grinding robot is developed for cervical bone-grinding by image navigation and surgical plan. The bone-grinding robot including mechanical design and low level control is designed. The bone-grinding robot navigation is realized by optical positioning with spatial registration coordinate system defined. And a parametric robot bone-grinding plan and high level control have been developed for plane grinding for cervical top endplate and tail endplate grinding by a cylindrical grinding drill and spherical grinding for two articular surfaces of bones by a ball grinding drill. Finally, the surgical flow for a robot-assisted cervical disc replacement surgery procedure is present. The final experiments results verified the key technologies and performance of the robot-assisted surgery system concept excellently, which points out a promising clinical application with higher operability. Finally, study innovations, study limitations, and future works of this present study are discussed, and conclusions of this paper are also summarized further. This bone-grinding robot is still in the initial stage, and there are many problems to be solved from a clinical point of view. Moreover, the technique is promising and can give a good support for surgeons in future clinical work.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Huang M J (2013) Anterior Cervical Decompression and Fusion. Springer, New York Huang M J (2013) Anterior Cervical Decompression and Fusion. Springer, New York
2.
go back to reference Obernauer J, Landscheidt J, Hartmann S et al (2016) Cervical arthroplasty with ROTAIO® cervical disc prosthesis: first clinical and radiographic outcome analysis in a multicenter prospective trial. BMC Musculoskelet Disord 17(1):1–7CrossRef Obernauer J, Landscheidt J, Hartmann S et al (2016) Cervical arthroplasty with ROTAIO® cervical disc prosthesis: first clinical and radiographic outcome analysis in a multicenter prospective trial. BMC Musculoskelet Disord 17(1):1–7CrossRef
3.
go back to reference Zhao Y, Zhang Y, Sun Y, et al. (2016) Application of cervical arthroplasty with Bryan cervical disc: 10-year follow-up results in China. Spine, 41(2). Zhao Y, Zhang Y, Sun Y, et al. (2016) Application of cervical arthroplasty with Bryan cervical disc: 10-year follow-up results in China. Spine, 41(2).
4.
go back to reference Bartels R. A. Baaj, P.V. Mummaneni, J.S. Uribe, A.R. Vaccaro, M.S. Greenberg (eds): Handbook of spine surgery. Acta Neurochir, 2016:1–1. Bartels R. A. Baaj, P.V. Mummaneni, J.S. Uribe, A.R. Vaccaro, M.S. Greenberg (eds): Handbook of spine surgery. Acta Neurochir, 2016:1–1.
5.
go back to reference Wagner SC, Kang DG, Helgeson MD (2016) Traumatic migration of the Bryan cervical disc arthroplasty. Global Spine Journal 6(1):e15–e20CrossRefPubMed Wagner SC, Kang DG, Helgeson MD (2016) Traumatic migration of the Bryan cervical disc arthroplasty. Global Spine Journal 6(1):e15–e20CrossRefPubMed
6.
go back to reference Shweikeh F, Amadio JP, Arnell M et al (2014) Robotics and the spine: a review of current and ongoing applications. Neurosurg Focus 36(3):E10–E10CrossRefPubMed Shweikeh F, Amadio JP, Arnell M et al (2014) Robotics and the spine: a review of current and ongoing applications. Neurosurg Focus 36(3):E10–E10CrossRefPubMed
7.
go back to reference Taylor RH, Mittelstadt BD, Paul HA, Hanson W, Kazanzides P, Zuhars JF, Williamson B, Musits BL, Glassman E, Bargar WL (1994) An image-directed robotic system for precise orthopaedic surgery. Calixarenes in the Nanoworld 10(3):151–172 Taylor RH, Mittelstadt BD, Paul HA, Hanson W, Kazanzides P, Zuhars JF, Williamson B, Musits BL, Glassman E, Bargar WL (1994) An image-directed robotic system for precise orthopaedic surgery. Calixarenes in the Nanoworld 10(3):151–172
8.
go back to reference Petermann J, Kober R, Heinze J (2000) Computer-assisted plan and robot-assisted surgery in anterior cruciate ligament reconstruction. Oper Tech Orthop 10(1):50–55CrossRef Petermann J, Kober R, Heinze J (2000) Computer-assisted plan and robot-assisted surgery in anterior cruciate ligament reconstruction. Oper Tech Orthop 10(1):50–55CrossRef
9.
go back to reference Wolf A, Jaramaz B, Lisien B et al (2005) MBARS: mini bone-attached robotic system for joint arthroplasty. International Journal of Medical Robotics & Computer Assisted Surgery 1(2):101–121CrossRef Wolf A, Jaramaz B, Lisien B et al (2005) MBARS: mini bone-attached robotic system for joint arthroplasty. International Journal of Medical Robotics & Computer Assisted Surgery 1(2):101–121CrossRef
10.
go back to reference Song S, Mor A, Jaramaz B (2009) HyBAR: hybrid bone-attached robot for joint arthroplasty. International Journal of Medical Robotics & Computer Assisted Surgery 5(2):223–231CrossRef Song S, Mor A, Jaramaz B (2009) HyBAR: hybrid bone-attached robot for joint arthroplasty. International Journal of Medical Robotics & Computer Assisted Surgery 5(2):223–231CrossRef
11.
go back to reference Cobb J, Henckel J, Gomes P et al (2006) Hands-on robotic unicompartmental knee replacement: a prospective, randomised controlled study of the acrobot system. Journal of Bone & Joint Surgery British Volume 88(2):188–197CrossRef Cobb J, Henckel J, Gomes P et al (2006) Hands-on robotic unicompartmental knee replacement: a prospective, randomised controlled study of the acrobot system. Journal of Bone & Joint Surgery British Volume 88(2):188–197CrossRef
12.
go back to reference Barzilay Y, Liebergall M, Fridlander A et al (2006) Miniature robotic guidance for spine surgery—introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres. International Journal of Medical Robotics & Computer Assisted Surgery 2(2):146–153CrossRef Barzilay Y, Liebergall M, Fridlander A et al (2006) Miniature robotic guidance for spine surgery—introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres. International Journal of Medical Robotics & Computer Assisted Surgery 2(2):146–153CrossRef
13.
go back to reference Togawa D, Kayanja MM, Reinhardt MK et al (2007) Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part 2—evaluation of system accuracy. Neurosurgery 60(1):5CrossRef Togawa D, Kayanja MM, Reinhardt MK et al (2007) Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part 2—evaluation of system accuracy. Neurosurgery 60(1):5CrossRef
14.
go back to reference Lefranc M, Peltier J (2015) Accuracy of thoracolumbar transpedicular and vertebral body percutaneous screw placement: coupling the Rosa ®, spine robot with intraoperative flat-panel CT guidance—a cadaver study. J Robot Surg 9(4):1–8CrossRef Lefranc M, Peltier J (2015) Accuracy of thoracolumbar transpedicular and vertebral body percutaneous screw placement: coupling the Rosa ®, spine robot with intraoperative flat-panel CT guidance—a cadaver study. J Robot Surg 9(4):1–8CrossRef
15.
go back to reference Chenin L, Peltier J, Lefranc M (2016) Minimally invasive transforaminal lumbar interbody fusion with the ROSATM spine robot and intraoperative flat-panel CT guidance. Acta Neurochir:1–4 Chenin L, Peltier J, Lefranc M (2016) Minimally invasive transforaminal lumbar interbody fusion with the ROSATM spine robot and intraoperative flat-panel CT guidance. Acta Neurochir:1–4
16.
go back to reference Yu W, Chao Y, Zhang FQ et al (2007) Application of the bi-planar navigation robot system in different orthopedic indications. Robot 29(3):200–206 Yu W, Chao Y, Zhang FQ et al (2007) Application of the bi-planar navigation robot system in different orthopedic indications. Robot 29(3):200–206
17.
go back to reference Sun LN, Jian Z, Zhi-Jiang DU (2006) An image guided orthopedic surgery robot system. Journal of Harbin Engineering University Sun LN, Jian Z, Zhi-Jiang DU (2006) An image guided orthopedic surgery robot system. Journal of Harbin Engineering University
18.
go back to reference Su W, Zhang Y, Li D (2010) Application and overview of image guided surgery system. Chinese journal of medical instrumentation:34(4) Su W, Zhang Y, Li D (2010) Application and overview of image guided surgery system. Chinese journal of medical instrumentation:34(4)
19.
go back to reference Luo H, Jia F, Zheng Z, et al. An IGSTK-based surgical navigation system connected with medical robot[C]// Information Computing and Telecommunications (YC-ICT), 2010 I.E. Youth Conference on. IEEE, 2010:49–52. Luo H, Jia F, Zheng Z, et al. An IGSTK-based surgical navigation system connected with medical robot[C]// Information Computing and Telecommunications (YC-ICT), 2010 I.E. Youth Conference on. IEEE, 2010:49–52.
20.
go back to reference Zijian Z, Wu X, Yuncai L, Hongjian L (2006) Robot-assisted total knee replacement surgery systems and technology [J]. Chin J Biomed Eng 25(4):461–464 Zijian Z, Wu X, Yuncai L, Hongjian L (2006) Robot-assisted total knee replacement surgery systems and technology [J]. Chin J Biomed Eng 25(4):461–464
21.
go back to reference W. Yongfeng, Y. Hongjian, D. Zhijiang, et al. Structure optimization of a bi-planar parallel mechanism for spine surgeries[C]// Seventh International Conference on Measuring Technology and Mechatronics Automation. IEEE, 2015. W. Yongfeng, Y. Hongjian, D. Zhijiang, et al. Structure optimization of a bi-planar parallel mechanism for spine surgeries[C]// Seventh International Conference on Measuring Technology and Mechatronics Automation. IEEE, 2015.
22.
go back to reference Patel AA, Whang PG, Vaccaro AR (2008) Overview of computer-assisted image-guided surgery of the spine. Seminars in Spine Surgery 20(3):186–194CrossRef Patel AA, Whang PG, Vaccaro AR (2008) Overview of computer-assisted image-guided surgery of the spine. Seminars in Spine Surgery 20(3):186–194CrossRef
23.
go back to reference Zheng G, Nolte L P. Computer-assisted orthopedic surgery: current state and future perspective. 2015, 2(10). Zheng G, Nolte L P. Computer-assisted orthopedic surgery: current state and future perspective. 2015, 2(10).
24.
go back to reference Abraham ZN, Wolf A, Choset H (2006) A potential function approach to surface coverage for a surgical robot. Computer Aided Surgery Official Journal of the International Society for Computer Aided Surgery 11(1):1–9CrossRefPubMed Abraham ZN, Wolf A, Choset H (2006) A potential function approach to surface coverage for a surgical robot. Computer Aided Surgery Official Journal of the International Society for Computer Aided Surgery 11(1):1–9CrossRefPubMed
25.
go back to reference Guven Z Y, Barkana D E. Bone cutting trajectory generation using a medical user interface of an orthopedical surgical robotic system [J]. Human System Interactions (HSI), 2010 3rd Conference on2010, pp.325–330. Guven Z Y, Barkana D E. Bone cutting trajectory generation using a medical user interface of an orthopedical surgical robotic system [J]. Human System Interactions (HSI), 2010 3rd Conference on2010, pp.325–330.
26.
go back to reference Z Sugita N, Nakano T, Abe N, et al. (2011) Toolpath strategy based on geometric model for multi-axis medical machine tool. CIRP Ann Manuf Technol 60(1):419–424 Z Sugita N, Nakano T, Abe N, et al. (2011) Toolpath strategy based on geometric model for multi-axis medical machine tool. CIRP Ann Manuf Technol 60(1):419–424
27.
go back to reference Goffin J, Casey A, Kehr P et al (2003) Preliminary clinical experience with the Bryan cervical disc prosthesis. J Neurosurgery 53(3):840–845 Goffin J, Casey A, Kehr P et al (2003) Preliminary clinical experience with the Bryan cervical disc prosthesis. J Neurosurgery 53(3):840–845
28.
go back to reference Carricato M, Gosselin C (2009) A statically balanced Gough/Stewart-type platform: conception, design and simulation. Journal of Mechanisms & Robotics 1(3):403–421CrossRef Carricato M, Gosselin C (2009) A statically balanced Gough/Stewart-type platform: conception, design and simulation. Journal of Mechanisms & Robotics 1(3):403–421CrossRef
Metadata
Title
A 6-DOF parallel bone-grinding robot for cervical disc replacement surgery
Authors
Heqiang Tian
Chenchen Wang
Xiaoqing Dang
Lining Sun
Publication date
24-05-2017
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 12/2017
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-017-1648-4

Other articles of this Issue 12/2017

Medical & Biological Engineering & Computing 12/2017 Go to the issue

Premium Partner