Skip to main content
Top

28-11-2023

A Bayesian proportional hazards mixture cure model for interval-censored data

Authors: Chun Pan, Bo Cai, Xuemei Sui

Published in: Lifetime Data Analysis

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The proportional hazards mixture cure model is a popular analysis method for survival data where a subgroup of patients are cured. When the data are interval-censored, the estimation of this model is challenging due to its complex data structure. In this article, we propose a computationally efficient semiparametric Bayesian approach, facilitated by spline approximation and Poisson data augmentation, for model estimation and inference with interval-censored data and a cure rate. The spline approximation and Poisson data augmentation greatly simplify the MCMC algorithm and enhance the convergence of the MCMC chains. The empirical properties of the proposed method are examined through extensive simulation studies and also compared with the R package “GORCure”. The use of the proposed method is illustrated through analyzing a data set from the Aerobics Center Longitudinal Study.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Berkson J, Gage RP (1952) Survival curve for cancer patients following treatment. J Am Stat Assoc 47:501–515CrossRef Berkson J, Gage RP (1952) Survival curve for cancer patients following treatment. J Am Stat Assoc 47:501–515CrossRef
go back to reference Blair SN, Kampert JB, Kohl HW, Barlow CE, Macera CA, Paffenbarger RS, Gibbons LW (1996) Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA 276:205–210CrossRef Blair SN, Kampert JB, Kohl HW, Barlow CE, Macera CA, Paffenbarger RS, Gibbons LW (1996) Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA 276:205–210CrossRef
go back to reference Boag JW (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J R Stat Soc Ser B 11:15–53MATH Boag JW (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J R Stat Soc Ser B 11:15–53MATH
go back to reference Cai B, Lin X, Wang L (2011) Bayesian proportional hazards model for current status data with monotone splines. Comput Stat Data Anal 55:2644–2651MathSciNetCrossRefMATH Cai B, Lin X, Wang L (2011) Bayesian proportional hazards model for current status data with monotone splines. Comput Stat Data Anal 55:2644–2651MathSciNetCrossRefMATH
go back to reference Cox DR (1972) Regression models and life-tables (with discussion). J R Stat Soc Ser B 34:187–220MATH Cox DR (1972) Regression models and life-tables (with discussion). J R Stat Soc Ser B 34:187–220MATH
go back to reference Dey DK, Chen M, Chang H (1997) Bayesian approach for nonlinear random effects models. Biometrics 53:1239–1252CrossRefMATH Dey DK, Chen M, Chang H (1997) Bayesian approach for nonlinear random effects models. Biometrics 53:1239–1252CrossRefMATH
go back to reference Farewell VT (1982) The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 38:1041–1046CrossRef Farewell VT (1982) The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 38:1041–1046CrossRef
go back to reference Gelfand AE (1992) Model determination using predictive distributions with implementation via sampling-based methods (with discussion). In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics 4. Oxford University Press, Oxford, pp 147–167CrossRef Gelfand AE (1992) Model determination using predictive distributions with implementation via sampling-based methods (with discussion). In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics 4. Oxford University Press, Oxford, pp 147–167CrossRef
go back to reference Gilks WR, Best NG, Tan KKC (1995) Adaptive rejection Metropolis sampling within Gibbs sampling. Appl Stat 44:455–472CrossRefMATH Gilks WR, Best NG, Tan KKC (1995) Adaptive rejection Metropolis sampling within Gibbs sampling. Appl Stat 44:455–472CrossRefMATH
go back to reference Kuk A, Chen C-H (1992) A mixture model combining logistic regression with proportional hazards regression. Biometrika 79:531–541CrossRefMATH Kuk A, Chen C-H (1992) A mixture model combining logistic regression with proportional hazards regression. Biometrika 79:531–541CrossRefMATH
go back to reference Lee DC, Sui X, Church TS, Lavie CJ, Jackson AS, Blair SN (2012) Changes in fitness and fatness on the development of cardiovascular disease risk factors: hypertension, metabolic syndrome, and hypercholesterolemia. J Am Coll Cardiol 59:665–672CrossRef Lee DC, Sui X, Church TS, Lavie CJ, Jackson AS, Blair SN (2012) Changes in fitness and fatness on the development of cardiovascular disease risk factors: hypertension, metabolic syndrome, and hypercholesterolemia. J Am Coll Cardiol 59:665–672CrossRef
go back to reference Louis A (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc Ser B Stat Methodol 44:226–233MathSciNetMATH Louis A (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc Ser B Stat Methodol 44:226–233MathSciNetMATH
go back to reference McMahan CS, Wang L, Tebbs JM (2013) Regression analysis for current status data using the EM algorithm. Stat Med 32:4452–4466MathSciNetCrossRef McMahan CS, Wang L, Tebbs JM (2013) Regression analysis for current status data using the EM algorithm. Stat Med 32:4452–4466MathSciNetCrossRef
go back to reference Pan C, Cai B, Wang L, Lin X (2013) Bayesian semiparametric model for spatially correlated interval-censored survival data. Comput Stat Data Anal 74:198–208MathSciNetCrossRefMATH Pan C, Cai B, Wang L, Lin X (2013) Bayesian semiparametric model for spatially correlated interval-censored survival data. Comput Stat Data Anal 74:198–208MathSciNetCrossRefMATH
go back to reference Pan C, Cai B, Wang L (2015) Multiple frailty model for clustered interval-censored data with frailty selection. Stat Meth Med Res 26:1308–1322MathSciNetCrossRef Pan C, Cai B, Wang L (2015) Multiple frailty model for clustered interval-censored data with frailty selection. Stat Meth Med Res 26:1308–1322MathSciNetCrossRef
go back to reference Pan C, Cai B, Wang L (2020) A Bayesian approach for analyzing partly interval-censored data under the proportional hazards model. Stat Methods Med Res 29:3192–3204MathSciNetCrossRef Pan C, Cai B, Wang L (2020) A Bayesian approach for analyzing partly interval-censored data under the proportional hazards model. Stat Methods Med Res 29:3192–3204MathSciNetCrossRef
go back to reference Peng Y, Dear K (2000) A nonparametric mixture model for cure rate estimation. Biometrics 56:237–243CrossRefMATH Peng Y, Dear K (2000) A nonparametric mixture model for cure rate estimation. Biometrics 56:237–243CrossRefMATH
go back to reference Peng Y, Taylor J (2011) Mixture cure model with random effects for the analysis of a multi-center tonsil cancer study. Statist Med 30:211–223MathSciNetCrossRef Peng Y, Taylor J (2011) Mixture cure model with random effects for the analysis of a multi-center tonsil cancer study. Statist Med 30:211–223MathSciNetCrossRef
go back to reference Ramsay JO (1988) Monotone regression splines in action. Stat Sci 3:425–441 Ramsay JO (1988) Monotone regression splines in action. Stat Sci 3:425–441
go back to reference Tsodikov A (1998) A proportional hazards model taking account of long-term survivors. Biometrics 54:1508–1516CrossRefMATH Tsodikov A (1998) A proportional hazards model taking account of long-term survivors. Biometrics 54:1508–1516CrossRefMATH
go back to reference Wang X, Wang Z (2021) EM algorithm for the additive risk mixture cure model with interval-censored data. Lifetime Data Anal 27:91–130MathSciNetCrossRefMATH Wang X, Wang Z (2021) EM algorithm for the additive risk mixture cure model with interval-censored data. Lifetime Data Anal 27:91–130MathSciNetCrossRefMATH
go back to reference Wang L, McMahan CS, Hudgens MG, Qureshi ZP (2016) A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data. Biometrics 72:222–231MathSciNetCrossRefMATH Wang L, McMahan CS, Hudgens MG, Qureshi ZP (2016) A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data. Biometrics 72:222–231MathSciNetCrossRefMATH
go back to reference Xiang L, Ma X, Yau KW (2010) Mixture cure model with random effects for clustered interval-censored survival data. Stat Med 30:995–1006MathSciNetCrossRef Xiang L, Ma X, Yau KW (2010) Mixture cure model with random effects for clustered interval-censored survival data. Stat Med 30:995–1006MathSciNetCrossRef
go back to reference Xu L, Zhang J (2010) Multiple imputation method for the semiparametric accelerated failure time mixture cure model. Comput Stat Data Anal 54:1808–1816MathSciNetCrossRefMATH Xu L, Zhang J (2010) Multiple imputation method for the semiparametric accelerated failure time mixture cure model. Comput Stat Data Anal 54:1808–1816MathSciNetCrossRefMATH
go back to reference Xu Y, Zhao S, Hu T, Sun J (2021) Variable selection for generalized odds rate mixture cure models with interval-censored failure time data. Comput Stat Data Anal 156:107–115MathSciNetCrossRefMATH Xu Y, Zhao S, Hu T, Sun J (2021) Variable selection for generalized odds rate mixture cure models with interval-censored failure time data. Comput Stat Data Anal 156:107–115MathSciNetCrossRefMATH
go back to reference Yakovlev A, Tsodikov A (1996) Stochastic models of tumor latency and their biostatistical applications. World Scientific, SingaporeCrossRefMATH Yakovlev A, Tsodikov A (1996) Stochastic models of tumor latency and their biostatistical applications. World Scientific, SingaporeCrossRefMATH
go back to reference Zeng D, Cai J, Shen Y (2006) Semiparametric additive risks model for interval-censored data. Stat Sin 16:287–302MathSciNetMATH Zeng D, Cai J, Shen Y (2006) Semiparametric additive risks model for interval-censored data. Stat Sin 16:287–302MathSciNetMATH
go back to reference Zeng D, Mao L, Lin DY (2016) Maximum likelihood estimation for semiparametric transformation models with interval-censored data. Biometrika 103:253–271MathSciNetCrossRefMATH Zeng D, Mao L, Lin DY (2016) Maximum likelihood estimation for semiparametric transformation models with interval-censored data. Biometrika 103:253–271MathSciNetCrossRefMATH
go back to reference Zhang J, Peng Y (2007) A new estimation method for the semiparametric accelerated failure time mixture cure model. Statist Med 26:3157–3171MathSciNetCrossRef Zhang J, Peng Y (2007) A new estimation method for the semiparametric accelerated failure time mixture cure model. Statist Med 26:3157–3171MathSciNetCrossRef
go back to reference Zhou J, Zhang J, Lu W (2018) Computationally efficient estimation for the generalized odds rate mixture cure model with interval-censored data. J Comput Graph Stat 27:48–58MathSciNetCrossRefMATH Zhou J, Zhang J, Lu W (2018) Computationally efficient estimation for the generalized odds rate mixture cure model with interval-censored data. J Comput Graph Stat 27:48–58MathSciNetCrossRefMATH
go back to reference Zhou J, Zhang J, McLain AC, Cai B (2016) A multiple imputation approach for semiparametric cure model with interval censored data. Comput Stat Data Anal 99:105–114MathSciNetCrossRefMATH Zhou J, Zhang J, McLain AC, Cai B (2016) A multiple imputation approach for semiparametric cure model with interval censored data. Comput Stat Data Anal 99:105–114MathSciNetCrossRefMATH
Metadata
Title
A Bayesian proportional hazards mixture cure model for interval-censored data
Authors
Chun Pan
Bo Cai
Xuemei Sui
Publication date
28-11-2023
Publisher
Springer US
Published in
Lifetime Data Analysis
Print ISSN: 1380-7870
Electronic ISSN: 1572-9249
DOI
https://doi.org/10.1007/s10985-023-09613-8