Skip to main content
Top

2011 | OriginalPaper | Chapter

13. A Case Study of HFPN Simulation: Finding Essential Roles of Ror Gene in the Interaction of Feedback Loops in Mammalian Circadian Clock

Authors : Natsumi Mitou, Hiroshi Matsuno, Satoru Miyano, Shin-Ichi T. Inouye

Published in: Modeling in Systems Biology

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mammalian circadian clock is composed of two feedback loops, a Per-Cry and Clock-Bmal loops. The role of Rev-Erb gene, which interconnects these two feedback loops by the inhibition of Bmal from PER/CRY complex, has been investigated through biological experiments as well as computational simulations. However, for the role of Ror gene, which exerts contrary effect on the same target gene Bmal as the Rev-Erb, enough consideration has not been paid so far. This paper first improves the previous hybrid functional Petri net (HFPN) model of the circadian clock so that both of the Per-Cry and Clock-Bmal loops can participate in the maintenance of the circadian oscillations. This improvement is incomplete, however, because a fixed level of PER/CRY eliminates all the circadian oscillations. Although this problem can be resolved by the introduction of Ror into the HFPN model, another inconsistency remains, Bmal oscillation is not abolished by the knock-out of the Cry. Then we further incorporate a hypothetical path into the HFPN model, succeeding in eliminating this inconsistency while keeping complementary actions of two feedback loop.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Akashi, M., Takumi, T.: The orphan nuclear receptor Rora regulates circadian transcription of the mammalian core-clock Bmal1. Nat. Struct. Mol. Biol. 12, 441–448 (2005) CrossRef Akashi, M., Takumi, T.: The orphan nuclear receptor Rora regulates circadian transcription of the mammalian core-clock Bmal1. Nat. Struct. Mol. Biol. 12, 441–448 (2005) CrossRef
20.
go back to reference Bagheri, N., Stelling, J., Doyle, F.J. III: Quantitative performance metrics for robustness in circadian rhythms. Bioinformatics 23(3), 358–364 (2007) CrossRef Bagheri, N., Stelling, J., Doyle, F.J. III: Quantitative performance metrics for robustness in circadian rhythms. Bioinformatics 23(3), 358–364 (2007) CrossRef
30.
go back to reference Becker-Weimann, S., Wolf, J., Herzel, H., Kramer, A.: Modeling feedback loops of the mammalian circadian oscillator. Biophys. J. 87, 3023–3034 (2004) CrossRef Becker-Weimann, S., Wolf, J., Herzel, H., Kramer, A.: Modeling feedback loops of the mammalian circadian oscillator. Biophys. J. 87, 3023–3034 (2004) CrossRef
31.
go back to reference Becker-Weimann, S., Wolf, J., Kramer, A., Herzel, H.: A model of the mammalian circadian oscillator including the REV-ERBα module. Genome Inform. 15(1), 3–12 (2004) Becker-Weimann, S., Wolf, J., Kramer, A., Herzel, H.: A model of the mammalian circadian oscillator including the REV-ERBα module. Genome Inform. 15(1), 3–12 (2004)
90.
go back to reference Delaunay, F., Laudet, V.: Circadian clock and microarrays: mammalian genome gets rhythm. TREN. Genet. 18(12), 565–597 (2002) Delaunay, F., Laudet, V.: Circadian clock and microarrays: mammalian genome gets rhythm. TREN. Genet. 18(12), 565–597 (2002)
103.
go back to reference Dunlap, J.C.: Molecular bases for circadian clocks. Cell 96, 271–290 (1999) CrossRef Dunlap, J.C.: Molecular bases for circadian clocks. Cell 96, 271–290 (1999) CrossRef
117.
go back to reference Forger, D.B., Peskin, C.S.: A detailed predictive model of the mammalian circadian clock. Proc. Natl. Acad. Sci. USA 100(25), 14806–14811 (2003) CrossRef Forger, D.B., Peskin, C.S.: A detailed predictive model of the mammalian circadian clock. Proc. Natl. Acad. Sci. USA 100(25), 14806–14811 (2003) CrossRef
135.
go back to reference Glossop, N.R.J., Lyons, L.C., Hardin, P.E.: Interlocked feedback loops within the Drosophila circadian oscillator. Science 286, 766–768 (1999) CrossRef Glossop, N.R.J., Lyons, L.C., Hardin, P.E.: Interlocked feedback loops within the Drosophila circadian oscillator. Science 286, 766–768 (1999) CrossRef
137.
go back to reference Goldbeter, A.: Computational approaches to cellular rhythms. Nature 420(6912), 238–245 (2002) CrossRef Goldbeter, A.: Computational approaches to cellular rhythms. Nature 420(6912), 238–245 (2002) CrossRef
151.
go back to reference Hastings, M.H.: Circadian clockwork: two loops are better than one. Nat. Rev. Neurosci. 1(2), 143–146 (2000) CrossRef Hastings, M.H.: Circadian clockwork: two loops are better than one. Nat. Rev. Neurosci. 1(2), 143–146 (2000) CrossRef
167.
go back to reference Indic, P., Gurdziel, K., Kronauer, R.E., Klerman, E.B.: Development of a two-dimension manifold to represent high dimension mathematical models of the intracellular Mammalian circadian clock. J. Biol. Rhythms. 21(3), 222–232 (2006) CrossRef Indic, P., Gurdziel, K., Kronauer, R.E., Klerman, E.B.: Development of a two-dimension manifold to represent high dimension mathematical models of the intracellular Mammalian circadian clock. J. Biol. Rhythms. 21(3), 222–232 (2006) CrossRef
206.
go back to reference Ko, C.H., Takahashi, S.: Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15(2), R271–277 (2006) CrossRef Ko, C.H., Takahashi, S.: Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15(2), R271–277 (2006) CrossRef
223.
go back to reference Lee, C., Etchegaray, J.P., Cagampang, F.R., Loudon, A.S., Reppert, S.M.: Posttranslation mechanism regulate the mammalian circadian clock. Cell 107, 855–867 (2001) CrossRef Lee, C., Etchegaray, J.P., Cagampang, F.R., Loudon, A.S., Reppert, S.M.: Posttranslation mechanism regulate the mammalian circadian clock. Cell 107, 855–867 (2001) CrossRef
225.
go back to reference Leloup, J.C., Gonze, D., Goldbeter, A.: Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J. Biol. Rhythms 14(6), 433–448 (1999) CrossRef Leloup, J.C., Gonze, D., Goldbeter, A.: Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J. Biol. Rhythms 14(6), 433–448 (1999) CrossRef
226.
go back to reference Leloup, J.C., Goldbeter, A.: Modeling the molecular regulatory mechanism of circadian rhythms in Drosophila. BioEssays 22(1), 84–93 (2000) CrossRef Leloup, J.C., Goldbeter, A.: Modeling the molecular regulatory mechanism of circadian rhythms in Drosophila. BioEssays 22(1), 84–93 (2000) CrossRef
227.
go back to reference Leloup, J.C., Goldbeter, A.: Toward a detailed computational model for the mammalian circadian clock. Proc. Natl. Acad. Sci. USA 100(12), 7051–7056 (2003) CrossRef Leloup, J.C., Goldbeter, A.: Toward a detailed computational model for the mammalian circadian clock. Proc. Natl. Acad. Sci. USA 100(12), 7051–7056 (2003) CrossRef
228.
go back to reference Leloup, J.C., Goldbeter, A.: Modeling the circadian clock: from molecular mechanism to physiological disorders. BioEssays 30, 590–600 (2008) CrossRef Leloup, J.C., Goldbeter, A.: Modeling the circadian clock: from molecular mechanism to physiological disorders. BioEssays 30, 590–600 (2008) CrossRef
248.
go back to reference Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation of gene regulatory network. Proc. Pac. Symp. Biocomput. 5, 341–352 (2000) Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation of gene regulatory network. Proc. Pac. Symp. Biocomput. 5, 341–352 (2000)
251.
go back to reference Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopathways representation and simulation on hybrid functional Petri net. In Silico Biol. 3(3), 389–404 (2003) Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopathways representation and simulation on hybrid functional Petri net. In Silico Biol. 3(3), 389–404 (2003)
255.
go back to reference Matsuno, H., Inouye, S.-I.T., Okitsu, Y., Fujii, Y., Miyano, S.: A new regulatory interaction suggested by simulations for circadian genetic control mechanism in mammals. J. Bioinf. Comput. Biol. 4(1), 139–153 (2006) CrossRef Matsuno, H., Inouye, S.-I.T., Okitsu, Y., Fujii, Y., Miyano, S.: A new regulatory interaction suggested by simulations for circadian genetic control mechanism in mammals. J. Bioinf. Comput. Biol. 4(1), 139–153 (2006) CrossRef
274.
go back to reference Nagasaki, M., Doi, A., Matsuno, H., Miyano, S.: Genomic object net: I, a platform for modeling and simulating biopathways. Appl. Bioinform. 2(3), 181–184 (2003) Nagasaki, M., Doi, A., Matsuno, H., Miyano, S.: Genomic object net: I, a platform for modeling and simulating biopathways. Appl. Bioinform. 2(3), 181–184 (2003)
309.
go back to reference Preitner, N., Domiola, F., Molina, L.L., Zakany, J., Doboule, D., Albrecht, U., Schibler, U.: The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002) CrossRef Preitner, N., Domiola, F., Molina, L.L., Zakany, J., Doboule, D., Albrecht, U., Schibler, U.: The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002) CrossRef
326.
go back to reference Rusak, B., Zucker, I.: Neural regulation of circadian rhythms. Physiol. Rev. 59, 449–526 (1979) Rusak, B., Zucker, I.: Neural regulation of circadian rhythms. Physiol. Rev. 59, 449–526 (1979)
337.
go back to reference Sato, T.K., Panda, S., Miraglia, L.J., Reyes, T.M., Rudic, R.D., McNamara, K.A., FitzGerald, G.A., Kay, S.A., Hogenesch, J.B.: A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527–537 (2004) CrossRef Sato, T.K., Panda, S., Miraglia, L.J., Reyes, T.M., Rudic, R.D., McNamara, K.A., FitzGerald, G.A., Kay, S.A., Hogenesch, J.B.: A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527–537 (2004) CrossRef
341.
go back to reference Schibler, U., Sassone-Corsi, P.: A web of circadian pacemakers. Cell 111, 919–922 (2002) CrossRef Schibler, U., Sassone-Corsi, P.: A web of circadian pacemakers. Cell 111, 919–922 (2002) CrossRef
360.
go back to reference Shearman, L.P., Sriram, S., Weaver, D.R., et al.: Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000) CrossRef Shearman, L.P., Sriram, S., Weaver, D.R., et al.: Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000) CrossRef
365.
go back to reference Smolen, P., Baxter, D.A., Byrne, J.H.: Modeling circadian oscillations with interlocking positive and negative feedback loops. J. Neurosci. 21(17), 6644–6656 (2001) Smolen, P., Baxter, D.A., Byrne, J.H.: Modeling circadian oscillations with interlocking positive and negative feedback loops. J. Neurosci. 21(17), 6644–6656 (2001)
368.
go back to reference Sriram, K., Gopinathan, M.S.: A two variable delay model for the circadian rhythm of Neurospora crassa. J. Theor. Biol. 231(1), 23–38 (2004) MathSciNetCrossRef Sriram, K., Gopinathan, M.S.: A two variable delay model for the circadian rhythm of Neurospora crassa. J. Theor. Biol. 231(1), 23–38 (2004) MathSciNetCrossRef
384.
go back to reference Takigawa-Imamura, H., Mochizuki, A.: Transcriptional autoregulation by phosphorylated and non-phosphorylated KaiC in cyanobacterial circadian rhythms. J. Theor. Biol. 241(2), 178–192 (2006) MathSciNetCrossRef Takigawa-Imamura, H., Mochizuki, A.: Transcriptional autoregulation by phosphorylated and non-phosphorylated KaiC in cyanobacterial circadian rhythms. J. Theor. Biol. 241(2), 178–192 (2006) MathSciNetCrossRef
385.
go back to reference Takigawa-Imamura, H., Mochizuki, A.: Predicting regulation of the phosphorylation cycle of KaiC clock protein using mathematical analysis. J. Biol. Rhythms 21(5), 405–416 (2006) CrossRef Takigawa-Imamura, H., Mochizuki, A.: Predicting regulation of the phosphorylation cycle of KaiC clock protein using mathematical analysis. J. Biol. Rhythms 21(5), 405–416 (2006) CrossRef
400.
go back to reference Ueda, H.R., Hagiwara, M., Kitano, H.: Robust oscillations within the interlocked feedback model of Drosophila circadian rhythm. J. Theor. Biol. 210, 401–406 (2001) CrossRef Ueda, H.R., Hagiwara, M., Kitano, H.: Robust oscillations within the interlocked feedback model of Drosophila circadian rhythm. J. Theor. Biol. 210, 401–406 (2001) CrossRef
Metadata
Title
A Case Study of HFPN Simulation: Finding Essential Roles of Ror Gene in the Interaction of Feedback Loops in Mammalian Circadian Clock
Authors
Natsumi Mitou
Hiroshi Matsuno
Satoru Miyano
Shin-Ichi T. Inouye
Copyright Year
2011
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-84996-474-6_13

Premium Partner