Skip to main content
Top
Published in: Engineering with Computers 1/2023

16-11-2022 | Original Article

A cell-based smoothed finite-element method for gradient elasticity

Authors: Changkye Lee, Indra Vir Singh, Sundararajan Natarajan

Published in: Engineering with Computers | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the cell-based smoothed finite-element method (CS-FEM) is proposed for solving boundary value problems of gradient elasticity in two and three dimensions. The salient features of the CS-FEM are: it does not require an explicit form of the shape functions and alleviates the need for iso-parametric mapping. The main idea is to sub-divide the element into simplicial sub-cells and to use a constant smoothing function in each cell to compute the gradients. This new gradient is then used to compute the bilinear/linear form. The robustness of the method is demonstrated with problems involving smooth and singular solutions in both two and three dimensions. Numerical results show that the proposed framework is able to yield accurate results. The influence of the internal length scale on the stress concentration is studied systematically for a case of a plate with a hole and a plate with an edge crack in two and three dimensions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Note that, although the aforementioned non-homogeneous Dirichlet BCs are derived from the finite elasticity approximation, we simply employ them as prescribed displacements boundary conditions for this test.
 
Literature
1.
go back to reference Aifantis EC (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30:1279–1299CrossRefMATH Aifantis EC (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30:1279–1299CrossRefMATH
2.
3.
go back to reference Askes H, Aifantis EC (2006) Gradient elasticity theories in statics and dynamics—a unification of approaches. Int J Fract 139:297–304CrossRefMATH Askes H, Aifantis EC (2006) Gradient elasticity theories in statics and dynamics—a unification of approaches. Int J Fract 139:297–304CrossRefMATH
4.
go back to reference Auffray N, dell’Isola F, Eremeyev VA, Madeo A, Rosi G (2015) Analytical continuum mechanics à la Hamilton-Piola: least action principle for second gradient continua and capillary fluids. Math Mech Solids 20:375–417MathSciNetCrossRefMATH Auffray N, dell’Isola F, Eremeyev VA, Madeo A, Rosi G (2015) Analytical continuum mechanics à la Hamilton-Piola: least action principle for second gradient continua and capillary fluids. Math Mech Solids 20:375–417MathSciNetCrossRefMATH
7.
go back to reference Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710CrossRef Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710CrossRef
8.
go back to reference Pisano AA, Sofi A, Fuschi P (2009) Nonlocal integral elasticity: 2D finite element based solution. Int J Solids Struct 46:3836–3849CrossRefMATH Pisano AA, Sofi A, Fuschi P (2009) Nonlocal integral elasticity: 2D finite element based solution. Int J Solids Struct 46:3836–3849CrossRefMATH
9.
10.
go back to reference Askes H, Aifantis EC (2002) Numerical modeling of size effects with gradient elasticity—formulation, meshless discretization with examples. Int J Fract 117:347–358CrossRef Askes H, Aifantis EC (2002) Numerical modeling of size effects with gradient elasticity—formulation, meshless discretization with examples. Int J Fract 117:347–358CrossRef
11.
go back to reference Fischer P, Klassen M, Mergheim J, Steinmann P, Müller R (2010) Isogeometric analysis of 2D gradient elasticity. Comput Mech 47:325–334MathSciNetCrossRefMATH Fischer P, Klassen M, Mergheim J, Steinmann P, Müller R (2010) Isogeometric analysis of 2D gradient elasticity. Comput Mech 47:325–334MathSciNetCrossRefMATH
12.
go back to reference Natarajan S (2014) On the application of the partition of unity method for nonlocal response of low-dimensional structures. J Mech Behav Mater 23:153–168CrossRef Natarajan S (2014) On the application of the partition of unity method for nonlocal response of low-dimensional structures. J Mech Behav Mater 23:153–168CrossRef
13.
go back to reference Reiher JC, Giorgio I, Bertram A (2017) Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J Eng Mech 143:04016112-1–13 Reiher JC, Giorgio I, Bertram A (2017) Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J Eng Mech 143:04016112-1–13
14.
go back to reference Zheng B, Li T, Qi H, Gao L, Liu X, Yuan L (2022) Physics-informed machine learning model for computational fracture of quasi-brittle materials without labelled data. Int J Mech Sci 223:107282 Zheng B, Li T, Qi H, Gao L, Liu X, Yuan L (2022) Physics-informed machine learning model for computational fracture of quasi-brittle materials without labelled data. Int J Mech Sci 223:107282
15.
go back to reference Goswami S, Anitescu C, Chakraborty S, Rabczuk T (2020) Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theoret Appl Fract Mech 106:102447CrossRef Goswami S, Anitescu C, Chakraborty S, Rabczuk T (2020) Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theoret Appl Fract Mech 106:102447CrossRef
16.
go back to reference Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K, Zhuang X, Rabczuk T (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790MathSciNetCrossRefMATH Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K, Zhuang X, Rabczuk T (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790MathSciNetCrossRefMATH
17.
go back to reference Zervos A, Papanicolopulos S-A, Vardoulakis I (2009) Two finite-element discretizations for gradient elasticity. J Eng Mech 135:203–213MATH Zervos A, Papanicolopulos S-A, Vardoulakis I (2009) Two finite-element discretizations for gradient elasticity. J Eng Mech 135:203–213MATH
18.
go back to reference Kaiser T, Forest S, Menzel A (2021) A finite element implementation of the stress gradient theory. Meccanica 56:1109–1128MathSciNetCrossRef Kaiser T, Forest S, Menzel A (2021) A finite element implementation of the stress gradient theory. Meccanica 56:1109–1128MathSciNetCrossRef
19.
go back to reference Askes H, Morata I, Aifantis EC (2008) Finite element analysis with staggered gradient elasticity. Comput Struct 86:1266–1279CrossRef Askes H, Morata I, Aifantis EC (2008) Finite element analysis with staggered gradient elasticity. Comput Struct 86:1266–1279CrossRef
20.
go back to reference Askes H, Gitman IM (2009) Non-singular stresses in gradient elasticity at bi-material interface with transverse crack. Int J Fract 156:217–222CrossRefMATH Askes H, Gitman IM (2009) Non-singular stresses in gradient elasticity at bi-material interface with transverse crack. Int J Fract 156:217–222CrossRefMATH
21.
go back to reference Bagni C, Askes H (2015) Unified finite element methodology for gradient elasticity. Comput Struct 160:100–110CrossRef Bagni C, Askes H (2015) Unified finite element methodology for gradient elasticity. Comput Struct 160:100–110CrossRef
22.
go back to reference Liu GR, Dai KY, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39:859–877CrossRefMATH Liu GR, Dai KY, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39:859–877CrossRefMATH
23.
go back to reference Liu GR, Nguyen TT, Dai KY, Lam KY (2007) Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Methods Eng 71:902–930MathSciNetCrossRefMATH Liu GR, Nguyen TT, Dai KY, Lam KY (2007) Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Methods Eng 71:902–930MathSciNetCrossRefMATH
24.
go back to reference Le CV, Nguyen-Xuan H, Askes H, Bordas SPA, Rabczuk T, Nguyen-Vinh H (2010) A cell-based smoothed finite element method for kinematic limit analysis. Int J Numer Methods Eng 83:1651–1674MathSciNetCrossRefMATH Le CV, Nguyen-Xuan H, Askes H, Bordas SPA, Rabczuk T, Nguyen-Vinh H (2010) A cell-based smoothed finite element method for kinematic limit analysis. Int J Numer Methods Eng 83:1651–1674MathSciNetCrossRefMATH
25.
go back to reference Bordas SPA, Natarajan S (2010) On the approximation in the smoothed finite element method (SFEM). Int J Numer Methods Eng 81:660–670MathSciNetCrossRefMATH Bordas SPA, Natarajan S (2010) On the approximation in the smoothed finite element method (SFEM). Int J Numer Methods Eng 81:660–670MathSciNetCrossRefMATH
26.
go back to reference Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF (2008) A smoothed finite element method for plate analysis. Comput Methods Appl Mech Eng 197:1184–1203CrossRefMATH Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF (2008) A smoothed finite element method for plate analysis. Comput Methods Appl Mech Eng 197:1184–1203CrossRefMATH
27.
go back to reference Rodrigues JD, Natarajan S, Ferreira AJM, Carrera E, Cinefra M, Bordas SPA (2014) Analysis of composite plates through cell-based smoothed finite element and 4-noded mixed interpolation of tensorial components techniques. Comput Struct 135:83–87CrossRef Rodrigues JD, Natarajan S, Ferreira AJM, Carrera E, Cinefra M, Bordas SPA (2014) Analysis of composite plates through cell-based smoothed finite element and 4-noded mixed interpolation of tensorial components techniques. Comput Struct 135:83–87CrossRef
28.
go back to reference Natarajan S, Ferreira AJM, Bordas S, Carrera E, Cinefra M, Zenkour AM (2014) Analysis of functionally graded material plates using triangular elements with cell-based smoothed discrete shear gap method. Math Probl Eng 2014:1–14MathSciNetCrossRefMATH Natarajan S, Ferreira AJM, Bordas S, Carrera E, Cinefra M, Zenkour AM (2014) Analysis of functionally graded material plates using triangular elements with cell-based smoothed discrete shear gap method. Math Probl Eng 2014:1–14MathSciNetCrossRefMATH
29.
go back to reference Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas SPA (2008) A smoothed finite element method for shell analysis. Comput Methods Appl Mech Eng 198:165–177CrossRefMATH Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas SPA (2008) A smoothed finite element method for shell analysis. Comput Methods Appl Mech Eng 198:165–177CrossRefMATH
30.
go back to reference Thai-Hoang C, Nguyen-Thanh N, Nguyen-Xuan H, Rabczuk T, Bordas S (2011) A cell-based smoothed finite element method for free vibration and buckling analysis of shells. KSCE J Civ Eng 15:347–361CrossRef Thai-Hoang C, Nguyen-Thanh N, Nguyen-Xuan H, Rabczuk T, Bordas S (2011) A cell-based smoothed finite element method for free vibration and buckling analysis of shells. KSCE J Civ Eng 15:347–361CrossRef
31.
go back to reference Nguyen-Xuan H, Nguyen HV, Bordas S, Rabczuk T, Duflot M (2012) A cell-based smoothed finite element method for three dimensional solid structures. KSCE J Civ Eng 16:1230–1242CrossRef Nguyen-Xuan H, Nguyen HV, Bordas S, Rabczuk T, Duflot M (2012) A cell-based smoothed finite element method for three dimensional solid structures. KSCE J Civ Eng 16:1230–1242CrossRef
32.
go back to reference Wan D, Hu D, Natarajan S, Bordas SPA, Yang G (2017) A fully smoothed XFEM for analysis of axisymmetric problems with weak discontinuities. Int J Numer Methods Eng 110:203–226MathSciNetCrossRefMATH Wan D, Hu D, Natarajan S, Bordas SPA, Yang G (2017) A fully smoothed XFEM for analysis of axisymmetric problems with weak discontinuities. Int J Numer Methods Eng 110:203–226MathSciNetCrossRefMATH
33.
go back to reference Kumbhar PY, Francis A, Swaminathan N, Annabattula R, Natarajan S (2020) Development of user element routine (UEL) for cell-based smoothed finite element method (CSFEM) in abaqus. Int J Comput Methods 17:1850128MathSciNetCrossRefMATH Kumbhar PY, Francis A, Swaminathan N, Annabattula R, Natarajan S (2020) Development of user element routine (UEL) for cell-based smoothed finite element method (CSFEM) in abaqus. Int J Comput Methods 17:1850128MathSciNetCrossRefMATH
34.
go back to reference Cui X, Han X, Duan S, Liu G (2020) An ABAQUS implementation of the cell-based smoothed finite element method (CS-FEM). Int J Comput Methods 17:1850127MathSciNetCrossRefMATH Cui X, Han X, Duan S, Liu G (2020) An ABAQUS implementation of the cell-based smoothed finite element method (CS-FEM). Int J Comput Methods 17:1850127MathSciNetCrossRefMATH
35.
go back to reference Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48:1962–1990CrossRef Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48:1962–1990CrossRef
36.
go back to reference Altan SB, Aifantis EC (1992) On the structure of the mode III crack-tip in gradient elasticity. Scr Metall Mater 26:319–324CrossRef Altan SB, Aifantis EC (1992) On the structure of the mode III crack-tip in gradient elasticity. Scr Metall Mater 26:319–324CrossRef
37.
go back to reference Kolo I, Askes H, de Borst R (2017) Convergence analysis of Laplacian-based gradient elasticity in an isogeometric framework. Finite Elem Anal Des 135:56–67CrossRef Kolo I, Askes H, de Borst R (2017) Convergence analysis of Laplacian-based gradient elasticity in an isogeometric framework. Finite Elem Anal Des 135:56–67CrossRef
38.
go back to reference Liu GR, Nguyen TT (2010) Smoothed finite element methods. CRC Press, Boca Raton Liu GR, Nguyen TT (2010) Smoothed finite element methods. CRC Press, Boca Raton
39.
go back to reference Chen J-S, Wu C-T, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466CrossRefMATH Chen J-S, Wu C-T, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466CrossRefMATH
41.
go back to reference Bishop JE (2014) A displacement based finite element formulation for general polyhedra using harmonic shape functions. Int J Numer Methods Eng 97:1–31MathSciNetCrossRefMATH Bishop JE (2014) A displacement based finite element formulation for general polyhedra using harmonic shape functions. Int J Numer Methods Eng 97:1–31MathSciNetCrossRefMATH
Metadata
Title
A cell-based smoothed finite-element method for gradient elasticity
Authors
Changkye Lee
Indra Vir Singh
Sundararajan Natarajan
Publication date
16-11-2022
Publisher
Springer London
Published in
Engineering with Computers / Issue 1/2023
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01734-2

Other articles of this Issue 1/2023

Engineering with Computers 1/2023 Go to the issue