Skip to main content
Top
Published in: Journal of Computational Electronics 1/2018

06-11-2017

A comparative study of the effect of transparent conducting oxides on the performance of \(\hbox {Cu}_{2}\hbox {ZnSnS}_{4}\) thin film solar cell

Authors: A. D. Adewoyin, M. A. Olopade, M. A. C. Chendo

Published in: Journal of Computational Electronics | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One major factor affecting the performance of the kesterite \(\hbox {Cu}_{2} \hbox {ZnSnS}_{4}\) (CZTS) thin film solar cell is its low open circuit voltage (\({V}_\mathrm{oc}\)). In solar cells, transparent conducting oxides are components which act as electrode elements and their work functions control the open circuit voltage of the device. In this work, numerical modeling and simulation has been used to study the effect of various TCOs fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO) and indium tin oxide (ITO), on the performance characteristics of CZTS thin film solar cell. The usage of ITO gave the best performing device with a conversion efficiency of 9.98%, followed by AZO with 8.41% and FTO with 5.91%. Further optimization of some of the parameters of AZO and FTO shows that they are good alternative to the very expensive ITO. The effect of the variation in operating temperature indicates that AZO and FTO have better thermal stability. In addition, reduction in device thickness, application of FTO/AZO double layer and the filtering of the illumination within the visible spectrum enhanced the overall device performance which yielded an efficiency of 14.46%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fortunato, E., Ginley, D., Hosono, H., Paine, D.C.: Transparent conducting oxides for photovoltaics. MRS Bull. 32, 242–247 (2007)CrossRef Fortunato, E., Ginley, D., Hosono, H., Paine, D.C.: Transparent conducting oxides for photovoltaics. MRS Bull. 32, 242–247 (2007)CrossRef
2.
go back to reference Granqvist, C.G., Hultåker, A.: Transparent and conducting ITO films: new developments and applications. Thin Solid Films 411, 1–5 (2002)CrossRef Granqvist, C.G., Hultåker, A.: Transparent and conducting ITO films: new developments and applications. Thin Solid Films 411, 1–5 (2002)CrossRef
3.
go back to reference Öztas, M., Bedir, M.: Thickness dependence of structural, electrical and optical properties of sprayed ZnO: Cu films. Thin Solid Films 516, 1703–1709 (2008)CrossRef Öztas, M., Bedir, M.: Thickness dependence of structural, electrical and optical properties of sprayed ZnO: Cu films. Thin Solid Films 516, 1703–1709 (2008)CrossRef
4.
go back to reference Pandey, R., Yuldashev, S., Nguyen, H.D., Jeon, H.C., Kang, T.W.: Fabrication of aluminium doped zinc oxide (AZO) transparent conductive oxide by ultrasonic spray pyrolysis. Curr. Appl. Phys. 12, S56–S58 (2012)CrossRef Pandey, R., Yuldashev, S., Nguyen, H.D., Jeon, H.C., Kang, T.W.: Fabrication of aluminium doped zinc oxide (AZO) transparent conductive oxide by ultrasonic spray pyrolysis. Curr. Appl. Phys. 12, S56–S58 (2012)CrossRef
5.
go back to reference Liu, H., Avrutin, V., Izyumskaya, N., Özgür, Ü., Morkoç, H.: Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct. 48, 458–484 (2010)CrossRef Liu, H., Avrutin, V., Izyumskaya, N., Özgür, Ü., Morkoç, H.: Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct. 48, 458–484 (2010)CrossRef
6.
go back to reference Tuna, O., Selamet, Y., Aygun, G., Ozyuzer, L.: High quality ITO thin films grown by dc and RF sputtering without oxygen. J. Phys. D Appl. Phys. 43, 055402 (2010)CrossRef Tuna, O., Selamet, Y., Aygun, G., Ozyuzer, L.: High quality ITO thin films grown by dc and RF sputtering without oxygen. J. Phys. D Appl. Phys. 43, 055402 (2010)CrossRef
7.
go back to reference Badeker, K.: Electrical conductivity and thermo-electromotive force of some metallic compounds. Ann. Phys. 22, 749 (1907)CrossRef Badeker, K.: Electrical conductivity and thermo-electromotive force of some metallic compounds. Ann. Phys. 22, 749 (1907)CrossRef
8.
go back to reference Kawazoe, H., Yasukawa, N., Hyodo, H., Kurita, M., Yanagi, H., Hosono, H.: P-type electrical conduction in transparent thin films of \(\text{ CuAlO }_{2}\). Nature 389, 939–942 (1997)CrossRef Kawazoe, H., Yasukawa, N., Hyodo, H., Kurita, M., Yanagi, H., Hosono, H.: P-type electrical conduction in transparent thin films of \(\text{ CuAlO }_{2}\). Nature 389, 939–942 (1997)CrossRef
9.
go back to reference Chan, C.P., Lam, H., Surya, C.: Preparation of Cu‘ZnSnS\(_{4}\) films by electrodeposition using ionic liquids. Sol. Energy Mater. Sol. Cells 94, 207–211 (2010)CrossRef Chan, C.P., Lam, H., Surya, C.: Preparation of Cu‘ZnSnS\(_{4}\) films by electrodeposition using ionic liquids. Sol. Energy Mater. Sol. Cells 94, 207–211 (2010)CrossRef
10.
go back to reference Katagiri, H., Jimbo, K., Maw, W.S., Oishi, K., Yamazaki, M., Araki, H., Takeuchi, A.: Development of CZTS-based thin film solar cells. Thin Solid Films 517, 2455–2460 (2009)CrossRef Katagiri, H., Jimbo, K., Maw, W.S., Oishi, K., Yamazaki, M., Araki, H., Takeuchi, A.: Development of CZTS-based thin film solar cells. Thin Solid Films 517, 2455–2460 (2009)CrossRef
11.
go back to reference Seol, J.S., Lee, S.Y., Lee, J.C., Nam, H.D., Kim, K.H.: Electrical and optical properties of \(\text{ Cu }_{2}\text{ ZnSnS }_{4}\) thin films prepared by rf magnetron sputtering process. Sol. Energy Mater. Sol. Cells 75, 155–162 (2003)CrossRef Seol, J.S., Lee, S.Y., Lee, J.C., Nam, H.D., Kim, K.H.: Electrical and optical properties of \(\text{ Cu }_{2}\text{ ZnSnS }_{4}\) thin films prepared by rf magnetron sputtering process. Sol. Energy Mater. Sol. Cells 75, 155–162 (2003)CrossRef
12.
go back to reference Mitzi, D.B., Gunawan, O., Todorov, T.K., Wang, K., Guha, S.: The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 95, 1421–1436 (2011)CrossRef Mitzi, D.B., Gunawan, O., Todorov, T.K., Wang, K., Guha, S.: The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 95, 1421–1436 (2011)CrossRef
13.
go back to reference Repins, I., Vora, N., Beall, C., Wei, S.H., Yan, Y., Romero, M., Teeter, G., Du, H., To, B., Young, M. Noufi, R.: Kesterites and chalcopyrites: a comparison of close cousins. In: MRS Proceedings, vol. 1324, pp. 11-1324. Cambridge University Press, Cambridge Repins, I., Vora, N., Beall, C., Wei, S.H., Yan, Y., Romero, M., Teeter, G., Du, H., To, B., Young, M. Noufi, R.: Kesterites and chalcopyrites: a comparison of close cousins. In: MRS Proceedings, vol. 1324, pp. 11-1324. Cambridge University Press, Cambridge
14.
go back to reference Shin, B., Gunawan, O., Zhu, Y., Bojarczuk, N.A., Chey, S.J., Guha, S.: Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant \(\text{ Cu }_{2}\text{ ZnSnS }_{4 }\)absorber. Prog. Photovolt. Res. Appl. 21, 72–76 (2013)CrossRef Shin, B., Gunawan, O., Zhu, Y., Bojarczuk, N.A., Chey, S.J., Guha, S.: Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant \(\text{ Cu }_{2}\text{ ZnSnS }_{4 }\)absorber. Prog. Photovolt. Res. Appl. 21, 72–76 (2013)CrossRef
15.
go back to reference Teixeira, J.P., Sousa, R.A., Sousa, M.G.: Radiative transitions in highly doped and compensated chalcopyrites and kesterites: the case of \(\text{ Cu }_{2}\text{ ZnSnS }_{4}\). Phys. Rev. B 90, 235202 (2014)CrossRef Teixeira, J.P., Sousa, R.A., Sousa, M.G.: Radiative transitions in highly doped and compensated chalcopyrites and kesterites: the case of \(\text{ Cu }_{2}\text{ ZnSnS }_{4}\). Phys. Rev. B 90, 235202 (2014)CrossRef
16.
go back to reference Shockley, W., Queisser, H.J.: Detail balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)CrossRef Shockley, W., Queisser, H.J.: Detail balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)CrossRef
17.
go back to reference Burgelman, M., Nollet, P., Degrave, S.: Modeling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)CrossRef Burgelman, M., Nollet, P., Degrave, S.: Modeling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)CrossRef
18.
go back to reference Movla, H.: Optimization of the CIGS based thin film solar cells: numerical simulation and analysis. Optik 125, 67–70 (2014)CrossRef Movla, H.: Optimization of the CIGS based thin film solar cells: numerical simulation and analysis. Optik 125, 67–70 (2014)CrossRef
19.
go back to reference Hartnagel, H.L., Dawar, A.L., Jain, A.K., Jagadish, C.: Semiconducting Transparent Thin Films. Institute of Physics Publishing, Bristol (1995) Hartnagel, H.L., Dawar, A.L., Jain, A.K., Jagadish, C.: Semiconducting Transparent Thin Films. Institute of Physics Publishing, Bristol (1995)
20.
go back to reference Ginley, D.S., Bright, C.: Transparent conducting oxides. MRS Bull. 25, 15–18 (2000)CrossRef Ginley, D.S., Bright, C.: Transparent conducting oxides. MRS Bull. 25, 15–18 (2000)CrossRef
21.
go back to reference Minami, T.: Transparent conducting oxides semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, S35 (2005)CrossRef Minami, T.: Transparent conducting oxides semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, S35 (2005)CrossRef
22.
go back to reference Muhunthan, N., Singh, O.P. Thakur, M.K., Karthikeyan, P., Singh, D. Saravanan, M., Singh, V.N.: Interfacial properties of CZTS thin film solar cell. J. Solar Energy. 2014, Article ID 476123, 1–8 (2014) Muhunthan, N., Singh, O.P. Thakur, M.K., Karthikeyan, P., Singh, D. Saravanan, M., Singh, V.N.: Interfacial properties of CZTS thin film solar cell. J. Solar Energy. 2014, Article ID 476123, 1–8 (2014)
23.
go back to reference Patel, M., Ray, A.: Enhancement of output performance of \(\text{ Cu }_{2}\text{ ZnSnS }_{4}\) thin film solar cells—a numerical simulation approach and comparison with experiments. Physica B 407, 4391–4397 (2012)CrossRef Patel, M., Ray, A.: Enhancement of output performance of \(\text{ Cu }_{2}\text{ ZnSnS }_{4}\) thin film solar cells—a numerical simulation approach and comparison with experiments. Physica B 407, 4391–4397 (2012)CrossRef
24.
go back to reference Wang, K., Gunawan, O., Todorov, T., Shin, B., Chey, S.J.: Thermally evaporated \(\text{ Cu }_{2}\text{ ZnSnS }_{4}\) solar cells. Appl. Phys. Lett. 97, 143508 (2012)CrossRef Wang, K., Gunawan, O., Todorov, T., Shin, B., Chey, S.J.: Thermally evaporated \(\text{ Cu }_{2}\text{ ZnSnS }_{4}\) solar cells. Appl. Phys. Lett. 97, 143508 (2012)CrossRef
25.
go back to reference Gloeckler, M., Fahrenbruch, A. L. Sites J. R.: Numerical modeling of CIGS and CdTe solar cells: setting the baseline. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion. a–c, pp. 491–494 (2003) Gloeckler, M., Fahrenbruch, A. L. Sites J. R.: Numerical modeling of CIGS and CdTe solar cells: setting the baseline. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion. a–c, pp. 491–494 (2003)
26.
go back to reference Ito, K.: Copper Zinc Tin Sulphide-Based Thin Film Solar Cells. Wiley, Hoboken (2015) Ito, K.: Copper Zinc Tin Sulphide-Based Thin Film Solar Cells. Wiley, Hoboken (2015)
27.
go back to reference Battacharya, P.S.: Semiconductor Optoelectronic Devices, 2nd edn. Prentice Hall, Englewood Cliffs (1996) Battacharya, P.S.: Semiconductor Optoelectronic Devices, 2nd edn. Prentice Hall, Englewood Cliffs (1996)
28.
go back to reference Simya, O.K., Mahaboobbatcha, A., Balachander, K.: A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices Microstruct. 82, 248–261 (2015)CrossRef Simya, O.K., Mahaboobbatcha, A., Balachander, K.: A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices Microstruct. 82, 248–261 (2015)CrossRef
29.
go back to reference Niemegeers, A., Burgelman, M., Decock, K., Verschraegen, J., Degrave, S.: SCAPS manual (2014) Niemegeers, A., Burgelman, M., Decock, K., Verschraegen, J., Degrave, S.: SCAPS manual (2014)
30.
go back to reference Siebentritt, S.: Why are kesterite solar cells not 20% efficient? Thin Solid Films 535, 1–4 (2013)CrossRef Siebentritt, S.: Why are kesterite solar cells not 20% efficient? Thin Solid Films 535, 1–4 (2013)CrossRef
31.
go back to reference Meher, S.R., Balakrishnan, L., Alex, Z.C.: Analysis of \(\text{ Cu }_{2}\text{ ZnSnS }_{4}\)/CdS based photovoltaic cell: a numerical simulation approach. Superlattices Microstruct. 100, 703–722 (2016)CrossRef Meher, S.R., Balakrishnan, L., Alex, Z.C.: Analysis of \(\text{ Cu }_{2}\text{ ZnSnS }_{4}\)/CdS based photovoltaic cell: a numerical simulation approach. Superlattices Microstruct. 100, 703–722 (2016)CrossRef
32.
go back to reference Gordon, R.G.: Technological challenges for transparent conductors. Adv. Sci. Technol. 33, 1037–1050 (2003) Gordon, R.G.: Technological challenges for transparent conductors. Adv. Sci. Technol. 33, 1037–1050 (2003)
33.
go back to reference Coutts, T.J., Mason, T.O., Perkins, J.D., Ginley, D.S.: Transparent conducting oxides: status and opportunities in basic research. Proc. Electrochem. Soc. 99, 274–288 (1999) Coutts, T.J., Mason, T.O., Perkins, J.D., Ginley, D.S.: Transparent conducting oxides: status and opportunities in basic research. Proc. Electrochem. Soc. 99, 274–288 (1999)
34.
go back to reference Yamada, A., Matsubara, K., Sakurai, K., Ishizuka, S., Tampo, H., Fons, P.J., Iwata, K., Niki, S.: Photoluminescence characterization of excitonic centers in ZnO epitaxial films. Appl. Phys. Lett. 85, 5607 (2005)CrossRef Yamada, A., Matsubara, K., Sakurai, K., Ishizuka, S., Tampo, H., Fons, P.J., Iwata, K., Niki, S.: Photoluminescence characterization of excitonic centers in ZnO epitaxial films. Appl. Phys. Lett. 85, 5607 (2005)CrossRef
35.
go back to reference Rodrigues, E.M.G., et al.: Simulation of a solar cell considering single-diode equivalent circuit model. In: Proceedings of International Conference on Renewable Energies and Power Quality (2011) Rodrigues, E.M.G., et al.: Simulation of a solar cell considering single-diode equivalent circuit model. In: Proceedings of International Conference on Renewable Energies and Power Quality (2011)
36.
go back to reference Reggiani, S., Valdinoci, M., Colalongo, L., Rudan, M., Baccarani, G.: An analytical, temperature-dependent model for majority-and minority-carrier mobility in silicon devices. VLSI Des. 10, 467–483 (2000)CrossRef Reggiani, S., Valdinoci, M., Colalongo, L., Rudan, M., Baccarani, G.: An analytical, temperature-dependent model for majority-and minority-carrier mobility in silicon devices. VLSI Des. 10, 467–483 (2000)CrossRef
37.
go back to reference Green, M.A.: Solar Cells: Operating Principles, Technology, and System Applications. Prentice-Hall, Englewood Cliffs (1982) Green, M.A.: Solar Cells: Operating Principles, Technology, and System Applications. Prentice-Hall, Englewood Cliffs (1982)
38.
go back to reference Dinçer, F., Meral, M.E.: Critical factors that affecting efficiency of solar cells. Smart Grid Renew. Energy 1, 47–50 (2010)CrossRef Dinçer, F., Meral, M.E.: Critical factors that affecting efficiency of solar cells. Smart Grid Renew. Energy 1, 47–50 (2010)CrossRef
39.
go back to reference Bube, R.H., Fahrenbruch, A.L.: Fundamentals of Solar Cells. Academic Press, London (1983) Bube, R.H., Fahrenbruch, A.L.: Fundamentals of Solar Cells. Academic Press, London (1983)
40.
go back to reference Green, M.A.: Accuracy of analytical expressions for solar cell fill factors. Sol. Cells 7, 337–340 (1982)CrossRef Green, M.A.: Accuracy of analytical expressions for solar cell fill factors. Sol. Cells 7, 337–340 (1982)CrossRef
41.
go back to reference Ishibashi, S., Higuchi, Y., Ota, Y., Nakamura, K.: Low resistivity indium-tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films. J. Vac. Sci. Technol. A Vac. Surf. Films 8, 1403–1406 (1990) Ishibashi, S., Higuchi, Y., Ota, Y., Nakamura, K.: Low resistivity indium-tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films. J. Vac. Sci. Technol. A Vac. Surf. Films 8, 1403–1406 (1990)
42.
go back to reference Lin, Y.C., Jian, Y.C., Jiang, J.H.: A study on the wet etching behavior of AZO (ZnO: Al) transparent conducting film. Appl. Surf. Sci. 254, 2671–2677 (2008)CrossRef Lin, Y.C., Jian, Y.C., Jiang, J.H.: A study on the wet etching behavior of AZO (ZnO: Al) transparent conducting film. Appl. Surf. Sci. 254, 2671–2677 (2008)CrossRef
43.
go back to reference Jiang, X., Wong, F.L., Fung, M.K., Lee, S.T.: Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Appl. Phys. Lett. 83, 1875–1877 (2003)CrossRef Jiang, X., Wong, F.L., Fung, M.K., Lee, S.T.: Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Appl. Phys. Lett. 83, 1875–1877 (2003)CrossRef
44.
go back to reference Andersson, A., Johansson, N., Broms, P., Yu, N., Lupo, D., Salaneck, W.R.: Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Adv. Mater. 10, 859–863 (1998)CrossRef Andersson, A., Johansson, N., Broms, P., Yu, N., Lupo, D., Salaneck, W.R.: Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Adv. Mater. 10, 859–863 (1998)CrossRef
45.
go back to reference Sugiyama, K., Ishii, H., Ouchi, Y., Seki, K.: Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and X-ray photoemission spectroscopies. J. Appl. Phys. 87, 295–298 (2000)CrossRef Sugiyama, K., Ishii, H., Ouchi, Y., Seki, K.: Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and X-ray photoemission spectroscopies. J. Appl. Phys. 87, 295–298 (2000)CrossRef
46.
go back to reference Liu, J., Hains, A.W., Servaites, J.D., Ratner, M.A., Marks, T.J.: Highly conductive bilayer transparent conducting oxide thin films for large-area organic photovoltaic cells. Chem. Mater. 21, 5258–5263 (2009)CrossRef Liu, J., Hains, A.W., Servaites, J.D., Ratner, M.A., Marks, T.J.: Highly conductive bilayer transparent conducting oxide thin films for large-area organic photovoltaic cells. Chem. Mater. 21, 5258–5263 (2009)CrossRef
47.
go back to reference Wang, Y., Jiang, W., Ding, W., Chai, W.: Double-textured ZnO: Al films obtained by a one-step etching method for enhanced light trapping. J. Mater. Sci. Mater. Electron. 1–5 (2017) Wang, Y., Jiang, W., Ding, W., Chai, W.: Double-textured ZnO: Al films obtained by a one-step etching method for enhanced light trapping. J. Mater. Sci. Mater. Electron. 1–5 (2017)
48.
go back to reference Yan, X., Li, W., Aberle, A.G., Venkataraj, S.: Surface texturing studies of bilayer transparent conductive oxide (TCO) structures as front electrode for thin-film silicon solar cells. J. Mater. Sci. Mater. Electron. 26, 7049–7058 (2015)CrossRef Yan, X., Li, W., Aberle, A.G., Venkataraj, S.: Surface texturing studies of bilayer transparent conductive oxide (TCO) structures as front electrode for thin-film silicon solar cells. J. Mater. Sci. Mater. Electron. 26, 7049–7058 (2015)CrossRef
49.
go back to reference Ravikumar, P., Ravichandran, K., Sakthivel, B.: Effect of thickness of \(\text{ SnO }_{2}\): F over layer on certain physical properties of ZnO: Al thin films for opto-electronic applications. J. Mater. Sci. Technol. 28, 999–1003 (2012)CrossRef Ravikumar, P., Ravichandran, K., Sakthivel, B.: Effect of thickness of \(\text{ SnO }_{2}\): F over layer on certain physical properties of ZnO: Al thin films for opto-electronic applications. J. Mater. Sci. Technol. 28, 999–1003 (2012)CrossRef
50.
go back to reference Emery, K., Burdick, J., Caiyem, Y., Dunlavy, D., Field, H., Kroposki, B., Moriarty, T., Ottoson, L., Rummel, S., Strand, T. Wanlass, M.W.: Temperature dependence of photovoltaic cells, modules and systems. In: Photovoltaic Specialists Conference, 1996. Conference Record of the Twenty Fifth IEEE, pp. 1275–1278 (1996) Emery, K., Burdick, J., Caiyem, Y., Dunlavy, D., Field, H., Kroposki, B., Moriarty, T., Ottoson, L., Rummel, S., Strand, T.  Wanlass, M.W.: Temperature dependence of photovoltaic cells, modules and systems. In: Photovoltaic Specialists Conference, 1996. Conference Record of the Twenty Fifth IEEE, pp. 1275–1278 (1996)
51.
go back to reference Henry, J., Mohanraj, K., Sivakumar, G.: Electrical and optical properties of CZTS thin films prepared by SILAR method. J. Asian Ceram. Soc. 4, 81–84 (2016)CrossRef Henry, J., Mohanraj, K., Sivakumar, G.: Electrical and optical properties of CZTS thin films prepared by SILAR method. J. Asian Ceram. Soc. 4, 81–84 (2016)CrossRef
52.
go back to reference Cao, Y., Denny Jr., M.S., Caspar, J.V., Farneth, W.E., Guo, Q., Ionkin, A.S., Johnson, L.K., Lu, M., Malajovich, I., Radu, D., Rosenfeld, H.D.: High-efficiency solution-processed \(\text{ Cu }_{2}\text{ ZnSn }\text{(S, } \text{ Se) }_{4}\) thin-film solar cells prepared from binary and ternary nanoparticles. J. Am. Chem. Soc. 134, 15644–15647 (2012)CrossRef Cao, Y., Denny Jr., M.S., Caspar, J.V., Farneth, W.E., Guo, Q., Ionkin, A.S., Johnson, L.K., Lu, M., Malajovich, I., Radu, D., Rosenfeld, H.D.: High-efficiency solution-processed \(\text{ Cu }_{2}\text{ ZnSn }\text{(S, } \text{ Se) }_{4}\) thin-film solar cells prepared from binary and ternary nanoparticles. J. Am. Chem. Soc. 134, 15644–15647 (2012)CrossRef
53.
go back to reference Lin, X., Kavalakkatt, J., Kornhuber, K., Levcenko, S., Lux-Steiner, M.C., Ennaoui, A.: Structural and optical properties of \(\text{ Cu }_{2}\text{ ZnSnS }_{4}\) thin film absorbers from ZnS and \(\text{ Cu }_{3}\text{ SnS }_{4}\) nanoparticle precursors. Thin Solid Films 535, 10–13 (2013)CrossRef Lin, X., Kavalakkatt, J., Kornhuber, K., Levcenko, S., Lux-Steiner, M.C., Ennaoui, A.: Structural and optical properties of \(\text{ Cu }_{2}\text{ ZnSnS }_{4}\) thin film absorbers from ZnS and \(\text{ Cu }_{3}\text{ SnS }_{4}\) nanoparticle precursors. Thin Solid Films 535, 10–13 (2013)CrossRef
54.
go back to reference Shemelya, C., DeMeo, D.F., Vandervelde, T.E.: Two dimensional metallic photonic crystals for light trapping and anti-reflective coatings in thermos-photovoltaic applications. Appl. Phys. Lett. 104, 021115 (2014)CrossRef Shemelya, C., DeMeo, D.F., Vandervelde, T.E.: Two dimensional metallic photonic crystals for light trapping and anti-reflective coatings in thermos-photovoltaic applications. Appl. Phys. Lett. 104, 021115 (2014)CrossRef
55.
go back to reference Bwamba, J.A., Alu, N., Adama, K.K., Abdullahi, Z., Iwok, U.U., Egba, A.C., Oberafo, A.A.: Characterization of CZTS absorbent material prepared by field-assisted spray pyrolysis. Am. J. Mater. Sci. 4, 127–132 (2014) Bwamba, J.A., Alu, N., Adama, K.K., Abdullahi, Z., Iwok, U.U., Egba, A.C., Oberafo, A.A.: Characterization of CZTS absorbent material prepared by field-assisted spray pyrolysis. Am. J. Mater. Sci. 4, 127–132 (2014)
Metadata
Title
A comparative study of the effect of transparent conducting oxides on the performance of thin film solar cell
Authors
A. D. Adewoyin
M. A. Olopade
M. A. C. Chendo
Publication date
06-11-2017
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2018
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-1106-4

Other articles of this Issue 1/2018

Journal of Computational Electronics 1/2018 Go to the issue