Skip to main content
Top
Published in: Progress in Artificial Intelligence 1/2019

04-03-2019 | Review

A comparative study of the evolutionary many-objective algorithms

Authors: Haitong Zhao, Changsheng Zhang, Jiaxu Ning, Bin Zhang, Peng Sun, Yunfei Feng

Published in: Progress in Artificial Intelligence | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The many-objective optimization problem (MaOP) is widespread in real life. It contains multiple conflicting objectives to be optimized. Many evolutionary many-objective (EMaO) algorithms are proposed and developed to solve it. The EMaO algorithms have received extensive attentions and in-depth studies. At the beginning of this paper, the challenges of designing EMaO algorithms are first summarized. Based on the optimization strategies, the existing EMaO algorithms are classified. Characteristics of each class of algorithms are interpreted and compared in detail. Their applicability for different types of MaOPs is discussed. Next, the numerical experiment was implemented to test the performance of typical EMaO algorithms. Their performance is analyzed from the perspectives of solution quality, convergence speed and the approximation of the Pareto front. Performance of different algorithms on different kind of test cases is analyzed, respectively. At last, the researching statuses of existing algorithms are summarized. The future researching directions of the EMaO algorithm are prospected.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ishibuchi, H., Setoguchi, Y., Masuda, H., et al.: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes. IEEE Trans. Evol. Comput. 21(2), 169–190 (2017)CrossRef Ishibuchi, H., Setoguchi, Y., Masuda, H., et al.: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes. IEEE Trans. Evol. Comput. 21(2), 169–190 (2017)CrossRef
2.
go back to reference Srinivas, S.N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolut. Comput. 2(3), 221–248 (1994)CrossRef Srinivas, S.N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolut. Comput. 2(3), 221–248 (1994)CrossRef
3.
go back to reference Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective optimization. In: IEEE World Congress on Computational Intelligence, Proceedings of the First IEEE Conference on Evolutionary Computation, 1994. IEEE Xplore, vol. 1, pp. 82–87 Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective optimization. In: IEEE World Congress on Computational Intelligence, Proceedings of the First IEEE Conference on Evolutionary Computation, 1994. IEEE Xplore, vol. 1, pp. 82–87
4.
go back to reference Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRef Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRef
5.
go back to reference Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRef Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRef
6.
go back to reference Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. In: TIK-Report 103, Computer Engineering and Networks Laboratory (TIK), Department of Electrical Engineering, ETH, Zurich (2001) Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. In: TIK-Report 103, Computer Engineering and Networks Laboratory (TIK), Department of Electrical Engineering, ETH, Zurich (2001)
7.
go back to reference Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2008)CrossRef Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2008)CrossRef
8.
go back to reference Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans. Evolut. Comput. 18(4), 577–601 (2014)CrossRef Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans. Evolut. Comput. 18(4), 577–601 (2014)CrossRef
9.
go back to reference He, Z., Yen, G.G.: Visualization and performance metric in many-objective optimization. IEEE Trans. Evol. Comput. 20(3), 386–402 (2016)CrossRef He, Z., Yen, G.G.: Visualization and performance metric in many-objective optimization. IEEE Trans. Evol. Comput. 20(3), 386–402 (2016)CrossRef
10.
go back to reference Ibrahim, A., Rahnamayan, S., Martin, M.V., et al.: 3D-RadVis: visualization of Pareto front in many-objective optimization. In: Evolutionary Computation. IEEE, 2016 Ibrahim, A., Rahnamayan, S., Martin, M.V., et al.: 3D-RadVis: visualization of Pareto front in many-objective optimization. In: Evolutionary Computation. IEEE, 2016
11.
go back to reference Freitas, A.R.R., Silva, R.C.P.: On the visualization of trade-offs and reducibility in many-objective optimization. In: Companion Publication of the Conference on Genetic and Evolutionary Computation. ACM, (2014) Freitas, A.R.R., Silva, R.C.P.: On the visualization of trade-offs and reducibility in many-objective optimization. In: Companion Publication of the Conference on Genetic and Evolutionary Computation. ACM, (2014)
12.
go back to reference Tanigaki, Y., Narukawa, K., Nojima, Y., et al.: Preference-based NSGA-II for many-objective knapsack problems. In: International Symposium on Soft Computing and Intelligent Systems, pp. 637–642. IEEE, (2004) Tanigaki, Y., Narukawa, K., Nojima, Y., et al.: Preference-based NSGA-II for many-objective knapsack problems. In: International Symposium on Soft Computing and Intelligent Systems, pp. 637–642. IEEE, (2004)
13.
go back to reference Mohammadi, A., Omidvar, M.N., Li, X., et al.: Integrating user preferences and decomposition methods for many-objective optimization. In: Evolutionary Computation, pp. 421–428. IEEE, (2014) Mohammadi, A., Omidvar, M.N., Li, X., et al.: Integrating user preferences and decomposition methods for many-objective optimization. In: Evolutionary Computation, pp. 421–428. IEEE, (2014)
14.
go back to reference Walker, D.J., Everson, R.M., Fieldsend, J.E.: Visualisation and ordering of many-objective populations. In: IEEE congress on evolutionary computation (CEC), pp. 1–8. IEEE, (2010) Walker, D.J., Everson, R.M., Fieldsend, J.E.: Visualisation and ordering of many-objective populations. In: IEEE congress on evolutionary computation (CEC), pp. 1–8. IEEE, (2010)
15.
go back to reference Ibrahim, A., Rahnamayan, S., Martin, M.V., et al.: 3D-RadVis: visualization of Pareto front in many-objective optimization. In: IEEE Congress on Evolutionary Computation, pp. 736–745. IEEE, (2016) Ibrahim, A., Rahnamayan, S., Martin, M.V., et al.: 3D-RadVis: visualization of Pareto front in many-objective optimization. In: IEEE Congress on Evolutionary Computation, pp. 736–745. IEEE, (2016)
16.
go back to reference He, Z., Yen, G.G.: An improved visualization approach in many-objective optimization. In: IEEE Congress on Evolutionary Computation, pp. 1618–1625. IEEE, (2016) He, Z., Yen, G.G.: An improved visualization approach in many-objective optimization. In: IEEE Congress on Evolutionary Computation, pp. 1618–1625. IEEE, (2016)
17.
go back to reference Silva, R., Salimi, A., Li, M., et al.: Visualization and analysis of tradeoffs in many-objective optimization: a case study on the interior permanent magnet motor design. IEEE Trans. Magn. 52(3), 1–4 (2016)CrossRef Silva, R., Salimi, A., Li, M., et al.: Visualization and analysis of tradeoffs in many-objective optimization: a case study on the interior permanent magnet motor design. IEEE Trans. Magn. 52(3), 1–4 (2016)CrossRef
18.
go back to reference Jiang, S., Yang, S.: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization. IEEE Trans. Evolut. Comput. 21(3), 329–346 (2017)CrossRefMathSciNet Jiang, S., Yang, S.: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization. IEEE Trans. Evolut. Comput. 21(3), 329–346 (2017)CrossRefMathSciNet
19.
go back to reference Cheng, R., Jin, Y., Olhofer, M., et al.: A reference vector guided evolutionary algorithm for many-objective optimization. In: IEEE Transactions on Evolutionary Computation, (2016) Cheng, R., Jin, Y., Olhofer, M., et al.: A reference vector guided evolutionary algorithm for many-objective optimization. In: IEEE Transactions on Evolutionary Computation, (2016)
20.
go back to reference Asafuddoula, M., Ray, T., Sarker, R.: A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans. Evol. Comput. 19(3), 445–460 (2014)MATHCrossRef Asafuddoula, M., Ray, T., Sarker, R.: A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans. Evol. Comput. 19(3), 445–460 (2014)MATHCrossRef
21.
go back to reference Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 18(3), 450–455 (2014)CrossRef Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 18(3), 450–455 (2014)CrossRef
22.
go back to reference Britto, A., Mostaghim, S., Pozo, A.: Archive based multi-swarm algorithm for many-objective problems. In: 2014 Brazilian Conference on Intelligent Systems (BRACIS), pp. 79–84. IEEE, (2014) Britto, A., Mostaghim, S., Pozo, A.: Archive based multi-swarm algorithm for many-objective problems. In: 2014 Brazilian Conference on Intelligent Systems (BRACIS), pp. 79–84. IEEE, (2014)
23.
go back to reference Cai, X., Li, Y., Fan, Z., et al.: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Trans. Evol. Comput. 19(4), 508–523 (2015)CrossRef Cai, X., Li, Y., Fan, Z., et al.: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Trans. Evol. Comput. 19(4), 508–523 (2015)CrossRef
24.
go back to reference Yuan, Y., Xu, H., Wang, B., et al.: Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans. Evolut. Comput. 20(2), 180–198 (2016)CrossRef Yuan, Y., Xu, H., Wang, B., et al.: Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans. Evolut. Comput. 20(2), 180–198 (2016)CrossRef
25.
go back to reference Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evolut. Comput. 19(6), 761–776 (2014)CrossRef Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evolut. Comput. 19(6), 761–776 (2014)CrossRef
26.
go back to reference Zou, J., Fu, L., Zheng, J., et al.: A many-objective evolutionary algorithm based on rotated grid. Appl. Soft Comput. 67, 596–609 (2018)CrossRef Zou, J., Fu, L., Zheng, J., et al.: A many-objective evolutionary algorithm based on rotated grid. Appl. Soft Comput. 67, 596–609 (2018)CrossRef
27.
go back to reference Yang, S., Li, M., Liu, X., et al.: A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evolut. Comput. 17(5), 721–736 (2013)CrossRef Yang, S., Li, M., Liu, X., et al.: A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evolut. Comput. 17(5), 721–736 (2013)CrossRef
28.
go back to reference Qi, Y., Ma, X., Liu, F., et al.: Moea/d with adaptive weight adjustment. Evolut. Comput. 22(2), 231–264 (2014)CrossRef Qi, Y., Ma, X., Liu, F., et al.: Moea/d with adaptive weight adjustment. Evolut. Comput. 22(2), 231–264 (2014)CrossRef
29.
go back to reference Liu, H.L., Chen, L., Zhang, Q., et al.: An evolutionary many-objective optimisation algorithm with adaptive region decomposition. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4763–4769. IEEE, (2016) Liu, H.L., Chen, L., Zhang, Q., et al.: An evolutionary many-objective optimisation algorithm with adaptive region decomposition. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4763–4769. IEEE, (2016)
30.
go back to reference Cai, X., Yang, Z., Fan, Z., et al.: Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization. IEEE Trans. Cybern. 47(9), 2824–2837 (2017)CrossRef Cai, X., Yang, Z., Fan, Z., et al.: Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization. IEEE Trans. Cybern. 47(9), 2824–2837 (2017)CrossRef
31.
go back to reference He, Z., Yen, G.G.: Diversity improvement in decomposition-based multi-objective evolutionary algorithm for many-objective optimization problems. In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 2409–2414. IEEE, (2014) He, Z., Yen, G.G.: Diversity improvement in decomposition-based multi-objective evolutionary algorithm for many-objective optimization problems. In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 2409–2414. IEEE, (2014)
32.
go back to reference Zhu, C., Cai, X., Fan, Z., et al.: A two-phase many-objective evolutionary algorithm with penalty based adjustment for reference lines. In: IEEE Congress on Evolutionary Computation, pp. 2161–2168. IEEE, (2016) Zhu, C., Cai, X., Fan, Z., et al.: A two-phase many-objective evolutionary algorithm with penalty based adjustment for reference lines. In: IEEE Congress on Evolutionary Computation, pp. 2161–2168. IEEE, (2016)
33.
go back to reference Chugh, T., Jin, Y., Miettinen, K., et al.: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. IEEE Trans. Evolut. Comput. 22(1), 129–142 (2018)CrossRef Chugh, T., Jin, Y., Miettinen, K., et al.: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. IEEE Trans. Evolut. Comput. 22(1), 129–142 (2018)CrossRef
34.
go back to reference Zhou, C., Dai, G., Zhang, C., et al.: Entropy based evolutionary algorithm with adaptive reference points for many-objective optimization problems. Inf. Sci. 465, 232–247 (2018)MathSciNetCrossRef Zhou, C., Dai, G., Zhang, C., et al.: Entropy based evolutionary algorithm with adaptive reference points for many-objective optimization problems. Inf. Sci. 465, 232–247 (2018)MathSciNetCrossRef
35.
go back to reference Wu, M., Li, K., Kwong, S., et al.: Matching-based selection with incomplete lists for decomposition multi-objective optimization. IEEE Trans. Evolut. Comput. 21, 554–568 (2017)CrossRef Wu, M., Li, K., Kwong, S., et al.: Matching-based selection with incomplete lists for decomposition multi-objective optimization. IEEE Trans. Evolut. Comput. 21, 554–568 (2017)CrossRef
36.
go back to reference He, Z., Yen, G.G.: Many-objective evolutionary algorithms based on coordinated selection strategy. IEEE Trans. Evolut. Comput. 21(2), 220–233 (2017)CrossRef He, Z., Yen, G.G.: Many-objective evolutionary algorithms based on coordinated selection strategy. IEEE Trans. Evolut. Comput. 21(2), 220–233 (2017)CrossRef
37.
go back to reference Li, K., Deb, K., Zhang, Q., et al.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evolut. Comput. 19(5), 694–716 (2015)CrossRef Li, K., Deb, K., Zhang, Q., et al.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evolut. Comput. 19(5), 694–716 (2015)CrossRef
38.
go back to reference Ray, T., Asafuddoula, M., Isaacs, A.A.: Steady state decomposition based quantum genetic algorithm for many objective optimization. In: Evolutionary Computation, pp. 2817–2824. IEEE, (2013) Ray, T., Asafuddoula, M., Isaacs, A.A.: Steady state decomposition based quantum genetic algorithm for many objective optimization. In: Evolutionary Computation, pp. 2817–2824. IEEE, (2013)
39.
go back to reference Laumanns, M., Thiele, L., Deb, K., et al.: Combining convergence and diversity in evolutionary multiobjective optimization. Evolut. Comput. 10(3), 263–282 (2002)CrossRef Laumanns, M., Thiele, L., Deb, K., et al.: Combining convergence and diversity in evolutionary multiobjective optimization. Evolut. Comput. 10(3), 263–282 (2002)CrossRef
40.
go back to reference Sato, H., Aguirre, H.E., Tanaka, K.: Self-controlling dominance area of solutions in evolutionary many-objective optimization. Lect. Notes Comput. Sci. 6457(2), 455–465 (2010)CrossRef Sato, H., Aguirre, H.E., Tanaka, K.: Self-controlling dominance area of solutions in evolutionary many-objective optimization. Lect. Notes Comput. Sci. 6457(2), 455–465 (2010)CrossRef
41.
go back to reference Li, M., Zheng, J., Shen, R., et al.: A grid-based fitness strategy for evolutionary many-objective optimization. In: Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2010, Portland, Oregon, USA, pp. 463–470. (2010) Li, M., Zheng, J., Shen, R., et al.: A grid-based fitness strategy for evolutionary many-objective optimization. In: Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2010, Portland, Oregon, USA, pp. 463–470. (2010)
42.
go back to reference Pierro, F.D., Khu, S.T., Savic, D.A.: An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Trans. Evolut. Comput. 11(1), 17–45 (2007)CrossRef Pierro, F.D., Khu, S.T., Savic, D.A.: An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Trans. Evolut. Comput. 11(1), 17–45 (2007)CrossRef
43.
go back to reference Farina, M., Amato, P.: A fuzzy definition of optimality for many-criteria optimization problems. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum 34(3), 315–326 (2004)CrossRef Farina, M., Amato, P.: A fuzzy definition of optimality for many-criteria optimization problems. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum 34(3), 315–326 (2004)CrossRef
44.
go back to reference He, Z., Yen, G.G., Zhang, J.: Fuzzy-based pareto optimality for many-objective evolutionary algorithms. IEEE Trans. Evolut. Comput. 18(2), 269–285 (2014)CrossRef He, Z., Yen, G.G., Zhang, J.: Fuzzy-based pareto optimality for many-objective evolutionary algorithms. IEEE Trans. Evolut. Comput. 18(2), 269–285 (2014)CrossRef
45.
go back to reference Li, M., Zheng, J., Li, K., et al.: Enhancing diversity for average ranking method in evolutionary many-objective optimization. In: Parallel Problem Solving from Nature, PPSN XI, pp. 647–656. Springer, Berlin (2010) Li, M., Zheng, J., Li, K., et al.: Enhancing diversity for average ranking method in evolutionary many-objective optimization. In: Parallel Problem Solving from Nature, PPSN XI, pp. 647–656. Springer, Berlin (2010)
46.
go back to reference Zou, X., Chen, Y., Liu, M., et al.: A new evolutionary algorithm for solving many-objective optimization problems. IEEE Trans. Syst. Man Cybern. Part B Cybern. Publ. IEEE Syst. Man Cybern. Soc. 38(5), 1402–1412 (2008)CrossRef Zou, X., Chen, Y., Liu, M., et al.: A new evolutionary algorithm for solving many-objective optimization problems. IEEE Trans. Syst. Man Cybern. Part B Cybern. Publ. IEEE Syst. Man Cybern. Soc. 38(5), 1402–1412 (2008)CrossRef
47.
go back to reference Kukkonen, S., Lampinen, J.: Ranking-dominance and many-objective optimization. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 3983–3990. IEEE, (2007) Kukkonen, S., Lampinen, J.: Ranking-dominance and many-objective optimization. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 3983–3990. IEEE, (2007)
48.
go back to reference Yuan, Y., Xu, H., Wang, B., et al.: A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evolut. Comput. 20(1), 16–37 (2016)CrossRef Yuan, Y., Xu, H., Wang, B., et al.: A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evolut. Comput. 20(1), 16–37 (2016)CrossRef
49.
go back to reference Gong, D.W., Sun, J., Miao, Z.: A set-based genetic algorithm for interval many-objective optimization problems. IEEE Trans. Evolut. Comput. 99, 1 (2016) Gong, D.W., Sun, J., Miao, Z.: A set-based genetic algorithm for interval many-objective optimization problems. IEEE Trans. Evolut. Comput. 99, 1 (2016)
50.
go back to reference Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)CrossRef Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)CrossRef
51.
go back to reference Deb, K., Jain, H.: Handling many-objective problems using an improved NSGA-II procedure. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE, (2012) Deb, K., Jain, H.: Handling many-objective problems using an improved NSGA-II procedure. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE, (2012)
52.
go back to reference Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Opt. 8(3), 631–657 (2000)MathSciNetMATHCrossRef Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Opt. 8(3), 631–657 (2000)MathSciNetMATHCrossRef
53.
go back to reference Seada, H., Deb, K.: U-NSGA-III: a unified evolutionary optimization procedure for single, multiple, and many objectives: proof-of-principle results. In: International Conference on Evolutionary Multi-Criterion Optimization, pp. 34–49. Springer, Cham, (2015) Seada, H., Deb, K.: U-NSGA-III: a unified evolutionary optimization procedure for single, multiple, and many objectives: proof-of-principle results. In: International Conference on Evolutionary Multi-Criterion Optimization, pp. 34–49. Springer, Cham, (2015)
54.
go back to reference Li, B., Li, J., Tang, K., et al.: An improved two archive algorithm for many-objective optimization. IEEE Trans. Evolut. Comput. 19(4), 524–541 (2015)CrossRef Li, B., Li, J., Tang, K., et al.: An improved two archive algorithm for many-objective optimization. IEEE Trans. Evolut. Comput. 19(4), 524–541 (2015)CrossRef
55.
go back to reference Zhao, H., Xiao, J.: A new many-objective evolutionary algorithm based on self-adaptive differential evolution. In: Ninth International Conference on Natural Computation, pp. 601–605. IEEE, (2013) Zhao, H., Xiao, J.: A new many-objective evolutionary algorithm based on self-adaptive differential evolution. In: Ninth International Conference on Natural Computation, pp. 601–605. IEEE, (2013)
56.
go back to reference Cheng, J., Yen, G.G., Zhang, G.: A many-objective evolutionary algorithm with enhanced mating and environmental selections. IEEE Trans. Evolut. Comput. 19(4), 592–605 (2015)CrossRef Cheng, J., Yen, G.G., Zhang, G.: A many-objective evolutionary algorithm with enhanced mating and environmental selections. IEEE Trans. Evolut. Comput. 19(4), 592–605 (2015)CrossRef
57.
go back to reference Li, M., Yang, S., Liu, X.: Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Trans. Evolut. Comput. 18(3), 348–365 (2014)CrossRef Li, M., Yang, S., Liu, X.: Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Trans. Evolut. Comput. 18(3), 348–365 (2014)CrossRef
58.
go back to reference Elarbi, M., Bechikh, S., Gupta, A., et al.: A new decomposition-based NSGA-II for many-objective optimization. IEEE Trans. Syst. Man. Cybern. Syst. 48(7), 1191–1210 (2018)CrossRef Elarbi, M., Bechikh, S., Gupta, A., et al.: A new decomposition-based NSGA-II for many-objective optimization. IEEE Trans. Syst. Man. Cybern. Syst. 48(7), 1191–1210 (2018)CrossRef
59.
go back to reference Tanigaki, Y., Narukawa, K., Nojima, Y., et al.: Preference-based NSGA-II for many-objective knapsack problems. In: 15th International Symposium on Soft Computing and Intelligent Systems (SCIS), 2014 Joint 7th International Conference on and Advanced Intelligent Systems (ISIS), pp. 637–642. IEEE, (2014) Tanigaki, Y., Narukawa, K., Nojima, Y., et al.: Preference-based NSGA-II for many-objective knapsack problems. In: 15th International Symposium on Soft Computing and Intelligent Systems (SCIS), 2014 Joint 7th International Conference on and Advanced Intelligent Systems (ISIS), pp. 637–642. IEEE, (2014)
60.
go back to reference Bandyopadhyay, S., Mukherjee, A.: An Algorithm for many-objective optimization with reduced objective computations: a study in differential evolution. IEEE Trans. Evolut. Comput. 19(3), 400–413 (2015)CrossRef Bandyopadhyay, S., Mukherjee, A.: An Algorithm for many-objective optimization with reduced objective computations: a study in differential evolution. IEEE Trans. Evolut. Comput. 19(3), 400–413 (2015)CrossRef
61.
go back to reference Murata, T., Taki, A.: Examination of the performance of objective reduction using correlation-based weighted-sum for many objective knapsack problems. In: International Conference on Hybrid Intelligent Systems, pp. 175–180. IEEE, (2010) Murata, T., Taki, A.: Examination of the performance of objective reduction using correlation-based weighted-sum for many objective knapsack problems. In: International Conference on Hybrid Intelligent Systems, pp. 175–180. IEEE, (2010)
62.
go back to reference Guo, X., Wang, X., Wang, M., et al.: A new objective reduction algorithm for many-objective problems: employing mutual information and clustering algorithm. In: Eighth International Conference on Computational Intelligence and Security, pp. 11–16. IEEE, (2012) Guo, X., Wang, X., Wang, M., et al.: A new objective reduction algorithm for many-objective problems: employing mutual information and clustering algorithm. In: Eighth International Conference on Computational Intelligence and Security, pp. 11–16. IEEE, (2012)
63.
go back to reference Saxena, D.K., Duro, J.A., Tiwari, A., et al.: Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans. Evolut. Comput. 17(1), 77–99 (2013)CrossRef Saxena, D.K., Duro, J.A., Tiwari, A., et al.: Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans. Evolut. Comput. 17(1), 77–99 (2013)CrossRef
64.
go back to reference Freitas, A.R.R., Fleming, P.J., Guimaraes, F.G.: A non-parametric harmony-based objective reduction method for many-objective optimization. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 651–656, IEEE, (2013) Freitas, A.R.R., Fleming, P.J., Guimaraes, F.G.: A non-parametric harmony-based objective reduction method for many-objective optimization. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 651–656, IEEE, (2013)
65.
go back to reference Pal, M., Saha, S., Bandyopadhyay, S.: Clustering based online automatic objective reduction to aid many-objective optimization. In: IEEE Congress on Evolutionary Computation, pp. 1131–1138. IEEE, (2016) Pal, M., Saha, S., Bandyopadhyay, S.: Clustering based online automatic objective reduction to aid many-objective optimization. In: IEEE Congress on Evolutionary Computation, pp. 1131–1138. IEEE, (2016)
66.
go back to reference Li, Y., Liu, H.L., Gu, F. An objective reduction algorithm based on hyperplane approximation for many-objective optimization problems. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2470–2476. IEEE, (2016) Li, Y., Liu, H.L., Gu, F. An objective reduction algorithm based on hyperplane approximation for many-objective optimization problems. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2470–2476. IEEE, (2016)
67.
go back to reference Yuan, Y., Ong, Y.S., Gupta, A., et al.: Objective reduction in many-objective optimization: evolutionary multiobjective approaches and comprehensive analysis. IEEE Trans. Evolut. Comput. 22(2), 189–210 (2018)CrossRef Yuan, Y., Ong, Y.S., Gupta, A., et al.: Objective reduction in many-objective optimization: evolutionary multiobjective approaches and comprehensive analysis. IEEE Trans. Evolut. Comput. 22(2), 189–210 (2018)CrossRef
68.
go back to reference He, Z., Yen, G.G.: Many-objective evolutionary algorithm: objective space reduction and diversity improvement. IEEE Trans. Evolut. Comput. 20(1), 145–160 (2016)CrossRef He, Z., Yen, G.G.: Many-objective evolutionary algorithm: objective space reduction and diversity improvement. IEEE Trans. Evolut. Comput. 20(1), 145–160 (2016)CrossRef
69.
go back to reference Dai, G., Zhou, C., Wang, M., et al.: Indicator and reference points co-guided evolutionary algorithm for many-objective optimization problems. Knowl.-Based Syst. 140, 50–63 (2018)CrossRef Dai, G., Zhou, C., Wang, M., et al.: Indicator and reference points co-guided evolutionary algorithm for many-objective optimization problems. Knowl.-Based Syst. 140, 50–63 (2018)CrossRef
70.
go back to reference Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evolut. Comput. 19(1), 45–76 (2011)CrossRef Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evolut. Comput. 19(1), 45–76 (2011)CrossRef
71.
go back to reference Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)MATHCrossRef Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)MATHCrossRef
72.
go back to reference Yuan, Y., Xu, H., Wang, B.: Evolutionary many-objective optimization using ensemble fitness ranking. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 669–676. ACM, (2014) Yuan, Y., Xu, H., Wang, B.: Evolutionary many-objective optimization using ensemble fitness ranking. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 669–676. ACM, (2014)
73.
go back to reference Xiao, J., Wang, K.: Ranking-based elitist differential evolution for many-objective optimization. In: 2013 5th International Conference on Intelligent Human–Machine Systems and Cybernetics (IHMSC), vol. 1, pp. 310–313. IEEE, (2013) Xiao, J., Wang, K.: Ranking-based elitist differential evolution for many-objective optimization. In: 2013 5th International Conference on Intelligent Human–Machine Systems and Cybernetics (IHMSC), vol. 1, pp. 310–313. IEEE, (2013)
74.
go back to reference Li, B., Tang, K., Li, J., et al.: Stochastic ranking algorithm for many-objective optimization based on multiple indicators. IEEE Trans. Evolut. Comput. 20(6), 924–938 (2016)CrossRef Li, B., Tang, K., Li, J., et al.: Stochastic ranking algorithm for many-objective optimization based on multiple indicators. IEEE Trans. Evolut. Comput. 20(6), 924–938 (2016)CrossRef
75.
go back to reference Li, F., Liu, J., Tan, S., et al.: R2-mopso: a multi-objective particle swarm optimizer based on r2-indicator and decomposition. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 3148–3155. IEEE, (2015) Li, F., Liu, J., Tan, S., et al.: R2-mopso: a multi-objective particle swarm optimizer based on r2-indicator and decomposition. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 3148–3155. IEEE, (2015)
76.
go back to reference Gómez, R.H., Coello, C.A.C.: MOMBI: a new metaheuristic for many-objective optimization based on the R2 indicator. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2488–2495. IEEE, (2013) Gómez, R.H., Coello, C.A.C.: MOMBI: a new metaheuristic for many-objective optimization based on the R2 indicator. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2488–2495. IEEE, (2013)
77.
go back to reference Díaz-Manríquez, A., Toscano-Pulido, G., Coello, C.A.C., et al.: A ranking method based on the R2 indicator for many-objective optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1523–1530. IEEE, (2013) Díaz-Manríquez, A., Toscano-Pulido, G., Coello, C.A.C., et al.: A ranking method based on the R2 indicator for many-objective optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1523–1530. IEEE, (2013)
78.
go back to reference Deb, K., Thiele, L., Laumanns, M., et al.: Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary Multiobjective Optimization, pp. 105–145, (2006) Deb, K., Thiele, L., Laumanns, M., et al.: Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary Multiobjective Optimization, pp. 105–145, (2006)
79.
go back to reference Huband, S., Hingston, P., Barone, L., et al.: A review of multiobjective test problems and a scalable test problem toolkit. Evolut. Comput. IEEE Trans. 10(5), 477–506 (2006)CrossRef Huband, S., Hingston, P., Barone, L., et al.: A review of multiobjective test problems and a scalable test problem toolkit. Evolut. Comput. IEEE Trans. 10(5), 477–506 (2006)CrossRef
80.
go back to reference Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: International Conference on Parallel Problem Solving from Nature, pp. 832–842. Springer, Berlin, (2004) Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: International Conference on Parallel Problem Solving from Nature, pp. 832–842. Springer, Berlin, (2004)
81.
go back to reference Deb, K., Mohan, M., Mishra, S.: A fast multi-objective evolutionary algorithm for finding well-spread pareto-optimal solutions. KanGAL Rep. 2003002, 1–18 (2003) Deb, K., Mohan, M., Mishra, S.: A fast multi-objective evolutionary algorithm for finding well-spread pareto-optimal solutions. KanGAL Rep. 2003002, 1–18 (2003)
82.
go back to reference Ishibuchi, H., Masuda, H., Tanigaki, Y., et al.: Difficulties in specifying reference points to calculate the inverted generational distance for many-objective optimization problems. In: IEEE, pp. 170–177 (2015) Ishibuchi, H., Masuda, H., Tanigaki, Y., et al.: Difficulties in specifying reference points to calculate the inverted generational distance for many-objective optimization problems. In: IEEE, pp. 170–177 (2015)
83.
go back to reference Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC ‘02, pp. 711–716. IEEE, (2002) Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC ‘02, pp. 711–716. IEEE, (2002)
84.
go back to reference Ishibuchi, H., Masuda, H., Nojima, Y.: A study on performance evaluation ability of a modified inverted generational distance indicator. In: Conference on Genetic and Evolutionary Computation, pp. 695–702. IEEE, (2015) Ishibuchi, H., Masuda, H., Nojima, Y.: A study on performance evaluation ability of a modified inverted generational distance indicator. In: Conference on Genetic and Evolutionary Computation, pp. 695–702. IEEE, (2015)
85.
go back to reference Williamson, D.F., Parker, R.A., Kendrick, J.S.: The box plot: a simple visual method to interpret data. Ann. Intern. Med. 110(11), 916–921 (1989)CrossRef Williamson, D.F., Parker, R.A., Kendrick, J.S.: The box plot: a simple visual method to interpret data. Ann. Intern. Med. 110(11), 916–921 (1989)CrossRef
86.
go back to reference Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data optimization. Math. Program. 156(1–2), 433–484 (2016)MathSciNetMATHCrossRef Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data optimization. Math. Program. 156(1–2), 433–484 (2016)MathSciNetMATHCrossRef
87.
88.
go back to reference Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetMATH Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetMATH
89.
go back to reference Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. Tik Rep. 214, 327–332 (2006) Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. Tik Rep. 214, 327–332 (2006)
90.
go back to reference García, S., Molina, D., Lozano, M., et al.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 15(6), 617 (2009)MATHCrossRef García, S., Molina, D., Lozano, M., et al.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 15(6), 617 (2009)MATHCrossRef
Metadata
Title
A comparative study of the evolutionary many-objective algorithms
Authors
Haitong Zhao
Changsheng Zhang
Jiaxu Ning
Bin Zhang
Peng Sun
Yunfei Feng
Publication date
04-03-2019
Publisher
Springer Berlin Heidelberg
Published in
Progress in Artificial Intelligence / Issue 1/2019
Print ISSN: 2192-6352
Electronic ISSN: 2192-6360
DOI
https://doi.org/10.1007/s13748-019-00174-2

Other articles of this Issue 1/2019

Progress in Artificial Intelligence 1/2019 Go to the issue

Premium Partner